We extend a few well-known results about orientation preserving homeomorphisms of the circle to orientation preserving circle maps, allowing even an infinite number of discontinuities. We define a set-valued map associated to the lift by filling the gaps in the graph, that shares many properties with continuous functions. Using elementary set-valued analysis, we prove existence and uniqueness of the rotation number, periodic limit orbit in the case when the latter is rational, and Cantor structure of the unique limit set when the rotation number is irrational. Moreover, the rotation number is found to be continuous with respect to the set-valued extension if we endow the space of such maps with the Haussdorff topology on the graph. For increasing continuous families of such maps, the set of parameter values where the rotation number is irrational is a Cantor set (up to a countable number of points).