Fast, sensitive and accurate integration of single-cell data with Harmony

被引:3782
|
作者
Korsunsky, Ilya [1 ,2 ,3 ,4 ,5 ,6 ]
Millard, Nghia [1 ,2 ,3 ,4 ,6 ]
Fan, Jean [7 ]
Slowikowski, Kamil [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Fan [1 ,2 ,3 ,4 ,5 ,6 ]
Wei, Kevin [2 ,3 ,4 ]
Baglaenko, Yuriy [1 ,2 ,3 ,4 ,5 ,6 ]
Brenner, Michael [2 ,3 ,4 ]
Loh, Po-ru [1 ,5 ,6 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ,8 ]
机构
[1] Brigham & Womens Hosp, Ctr Data Sci, 75 Francis St, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Div Genet, 75 Francis St, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Rheumatol, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[8] Univ Manchester, Manchester Acad Hlth Sci Ctr, Versus Arthrit Ctr Genet & Genom, Ctr Musculoskeletal Res, Manchester, Lancs, England
基金
美国国家卫生研究院;
关键词
RNA-SEQ; GENE-EXPRESSION; IDENTITY;
D O I
10.1038/s41592-019-0619-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony (https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of similar to 10(6) cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.
引用
收藏
页码:1289 / +
页数:14
相关论文
共 50 条
  • [1] Fast, sensitive and accurate integration of single-cell data with Harmony
    Ilya Korsunsky
    Nghia Millard
    Jean Fan
    Kamil Slowikowski
    Fan Zhang
    Kevin Wei
    Yuriy Baglaenko
    Michael Brenner
    Po-ru Loh
    Soumya Raychaudhuri
    Nature Methods, 2019, 16 : 1289 - 1296
  • [2] MOJITOO: a fast and universal method for integration of multimodal single-cell data
    Cheng, Mingbo
    Li, Zhijian
    Costa, Ivan G.
    BIOINFORMATICS, 2022, 38 (SUPPL 1) : 282 - 289
  • [3] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [4] A review on integration methods for single-cell data
    Pan D.
    Li H.
    Liu H.
    Sun X.
    1600, West China Hospital, Sichuan Institute of Biomedical Engineering (38): : 1010 - 1017
  • [5] Benchmark of Data Integration in Single-Cell Proteomics
    Gong, Yaguo
    Dai, Yangbo
    Wu, Qibiao
    Guo, Li
    Yao, Xiaojun
    Yang, Qingxia
    ANALYTICAL CHEMISTRY, 2025, 97 (02) : 1254 - 1263
  • [6] MASI enables fast model-free standardization and integration of single-cell transcriptomics data
    Yang Xu
    Rafael Kramann
    Rachel Patton McCord
    Sikander Hayat
    Communications Biology, 6
  • [7] MASI enables fast model-free standardization and integration of single-cell transcriptomics data
    Xu, Yang
    Kramann, Rafael
    McCord, Rachel Patton
    Hayat, Sikander
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [8] Computational principles and challenges in single-cell data integration
    Argelaguet, Ricard
    Cuomo, Anna S. E.
    Stegle, Oliver
    Marioni, John C.
    NATURE BIOTECHNOLOGY, 2021, 39 (10) : 1202 - 1215
  • [9] Computational principles and challenges in single-cell data integration
    Ricard Argelaguet
    Anna S. E. Cuomo
    Oliver Stegle
    John C. Marioni
    Nature Biotechnology, 2021, 39 : 1202 - 1215
  • [10] Integration of multi-modal single-cell data
    Lee, Michelle Y. Y.
    Li, Mingyao
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 190 - 191