A homozygous PIWIL2 frameshift variant affects the formation and maintenance of human-induced pluripotent stem cell-derived spermatogonial stem cells and causes Sertoli cell-only syndrome

被引:6
|
作者
Wang, Xiaotong [1 ,4 ]
Li, Zili [1 ]
Qu, Mengyuan [1 ]
Xiong, Chengliang [1 ,2 ,3 ]
Li, Honggang [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Inst Reprod Hlth, Ctr Reprod Med, Wuhan 430030, Peoples R China
[2] Wuhan Tongji Reprod Med Hosp, Wuhan 430013, Peoples R China
[3] Hubei Engn Res Ctr Preparat Applicat & Preservat, Wuhan 430013, Peoples R China
[4] Zhengzhou Univ, Affiliated Hosp 4, Zhengzhou 450052, Peoples R China
关键词
Male infertility; Sertoli cell-only syndrome; PIWIL2; Induced pluripotent stem cell; Spermatogonial stem cell; RNA-BINDING PROTEIN; INTERACTING RNA; NONOBSTRUCTIVE AZOOSPERMIA; GENETIC-VARIANTS; MALE-INFERTILITY; MALE GERMLINE; SELF-RENEWAL; PROLIFERATION; IDENTIFICATION; MUTATIONS;
D O I
10.1186/s13287-022-03175-6
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background The most serious condition of male infertility is complete Sertoli cell-only syndrome (SCOS), which refers to the lack of all spermatogenic cells in the testes. The genetic cause of SCOS remains to be explored. We aimed to investigate the genetic cause of SCOS and assess the effects of the identified causative variant on human male germ cells. Methods Whole-exome sequencing was performed to identify potentially pathogenic variants in a man with complete SCOS, and Sanger sequencing was performed to verify the causative variant in this man and his father and brother. The pathogenic mechanisms of the causative variant were investigated by in vitro differentiation of human-induced pluripotent stem cells (hiPSCs) into germ cell-like cells. Results The homozygous loss-of-function (LoF) variant p.His244ArgfsTer31 (c.731_732delAT) in PIWIL2 was identified as the causative variant in the man with complete SCOS, and the same variant in heterozygosis was confirmed in his father and brother. This variant resulted in a truncated PIWIL2 protein lacking all functional domains, and no PIWIL2 expression was detected in the patient's testes. The patient and PIWIL2(-/-) hiPSCs could be differentiated into primordial germ cell-like cells and spermatogonial stem cell-like cells (SSCLCs) in vitro, but the formation and maintenance of SSCLCs were severely impaired. RNA-seq analyses suggested the inactivation of the Wnt signaling pathway in the process of SSCLC induction in the PIWIL2(-/-) group, which was validated in the patient group by RT-qPCR. The Wnt signaling pathway inhibitor hindered the formation and maintenance of SSCLCs during the differentiation of normal hiPSCs. Conclusions Our study revealed the pivotal role of PIWIL2 in the formation and maintenance of human spermatogonial stem cells. We provided clinical and functional evidence that the LoF variant in PIWIL2 is a genetic cause of SCOS, which supported the potential role of PIWIL2 in genetic diagnosis. Furthermore, our results highlighted the applicability of in vitro differentiation models to function validation experiments.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Modeling Cardiovascular Risks of E-Cigarettes With Human-Induced Pluripotent Stem Cell-Derived Endothelial Cells
    Lee, Won Hee
    Ong, Sang-Ging
    Zhou, Yang
    Tian, Lei
    Bae, Hye Ryeong
    Baker, Natalie
    Whitlatch, Adam
    Mohammadi, Leila
    Guo, Hongchao
    Nadeau, Kari C.
    Springer, Matthew L.
    Schick, Suzaynn F.
    Bhatnagar, Aruni
    Wu, Joseph C.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (21) : 2722 - 2737
  • [42] Generation of Human-Induced Pluripotent Stem Cell-Derived Functional Enterocyte-Like Cells for Pharmacokinetic Studies
    Yoshida, Shinpei
    Honjo, Takayuki
    Iino, Keita
    Ishibe, Ryunosuke
    Leo, Sylvia
    Shimada, Tomoka
    Watanabe, Teruhiko
    Ishikawa, Masaya
    Maeda, Kazuya
    Kusuhara, Hiroyuki
    Shiraki, Nobuaki
    Kume, Shoen
    STEM CELL REPORTS, 2021, 16 (02): : 295 - 308
  • [43] Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes
    Reilly, Louise
    Munawar, Saba
    Zhang, Jianhua
    Crone, Wendy C. C.
    Eckhardt, Lee L. L.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [44] MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes
    Chaudhari, Umesh
    Nemade, Harshal
    Gaspar, John Antonydas
    Hescheler, Jurgen
    Hengstler, Jan G.
    Sachinidis, Agapios
    ARCHIVES OF TOXICOLOGY, 2016, 90 (12) : 3087 - 3098
  • [45] Characterization of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Bioenergetics and Utilization in Safety Screening
    Rana, Payal
    Anson, Blake
    Engle, Sandra
    Will, Yvonne
    TOXICOLOGICAL SCIENCES, 2012, 130 (01) : 117 - 131
  • [46] Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes
    Yang, Hao
    Yang, Yuan
    Kiskin, Fedir N.
    Shen, Mengcheng
    Zhang, Joe Z.
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [47] Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Rampoldi, Antonio
    Singh, Monalisa
    Wu, Qingling
    Duan, Meixue
    Jha, Rajneesh
    Maxwell, Joshua T.
    Bradner, Joshua M.
    Zhang, Xiaoyu
    Saraf, Anita
    Miller, Gary W.
    Gibson, Greg
    Brown, Lou Ann
    Xu, Chunhui
    TOXICOLOGICAL SCIENCES, 2019, 169 (01) : 280 - 292
  • [48] Regulation of ICa,L and force by PDEs in human-induced pluripotent stem cell-derived cardiomyocytes
    Saleem, Umber
    Ismaili, Djemail
    Mannhardt, Ingra
    Pinnschmidt, Hans
    Schulze, Thomas
    Christ, Torsten
    Eschenhagen, Thomas
    Hansen, Arne
    BRITISH JOURNAL OF PHARMACOLOGY, 2020, 177 (13) : 3036 - 3045
  • [49] Cardiac proarrhythmic risk assessment using human-induced pluripotent stem cell-derived cardiomyocytes
    Albert, Verena
    Jahic, Mirza
    Servant, Nicole
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2023, 123
  • [50] Cardiac toxicity from bisphenol A exposure in human-induced pluripotent stem cell-derived cardiomyocytes
    Hyun, Sung-Ae
    Lee, Chang Youn
    Ko, Moon Yi
    Chon, Sun-Hwa
    Kim, Ye-Ji
    Seo, Jeong-Wook
    Kim, Kee K.
    Ka, Minhan
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2021, 428