Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks

被引:21
|
作者
Hasan, Md Imran [1 ]
Ali, Md Shahin [2 ]
Rahman, Md Habibur [1 ]
Islam, Md Khairul [2 ]
机构
[1] Islamic Univ, Dept Comp Sci & Engn, Kushtia 7003, Bangladesh
[2] Islamic Univ, Dept Biomed Engn, Kushtia 7003, Bangladesh
关键词
COMPUTER-AIDED DIAGNOSIS; LUNG-CANCER; CLASSIFICATION; IMAGES;
D O I
10.1155/2022/5269913
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Colon cancer is a momentous reason for illness and death in people. The conclusive diagnosis of colon cancer is made through histological examination. Convolutional neural networks are being used to analyze colon cancer via digital image processing with the introduction of whole-slide imaging. Accurate categorization of colon cancers is necessary for capable analysis. Our objective is to promote a system for detecting and classifying colon adenocarcinomas by applying a deep convolutional neural network (DCNN) model with some preprocessing techniques on digital histopathology images. It is a leading cause of cancer-related death, despite the fact that both traditional and modern methods are capable of comparing images that may encompass cancer regions of various sorts after looking at a significant number of colon cancer images. The fundamental problem for colon histopathologists is differentiating benign from malignant illnesses to having some complicated factors. A cancer diagnosis can be automated through artificial intelligence (AI), enabling us to appraise more patients in less time and at a decreased cost. Modern deep learning (MDL) and digital image processing (DIP) approaches are used to accomplish this. The results indicate that the proposed structure can accurately analyze cancer tissues to a maximum of 99.80%. By implementing this approach, medical practitioners will establish an automated and reliable system for detecting various forms of colon cancer. Moreover, CAD systems will be built in the near future to extract numerous aspects from colonoscopic images for use as a preprocessing module for colon cancer diagnosis.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Fully automated detection of breast cancer in screening MRI using convolutional neural networks
    Dalmis, Mehmet Ufuk
    Vreemann, Suzan
    Kooi, Thijs
    Mann, Ritse M.
    Karssemeijer, Nico
    Gubern-Merida, Albert
    JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
  • [42] Automated glaucoma detection based on deep convolutional neural network
    Ko, Yu-Chieh
    Wey, Shin-Yu
    Lee, Chen-Yi
    Liu, Catherine Jui-Ling
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [43] Smile detection in the wild with deep convolutional neural networks
    Junkai Chen
    Qihao Ou
    Zheru Chi
    Hong Fu
    Machine Vision and Applications, 2017, 28 : 173 - 183
  • [44] Evaluation of deep convolutional neural networks for glaucoma detection
    Phan, Sang
    Satoh, Shin'ichi
    Yoda, Yoshioki
    Kashiwagi, Kenji
    Oshika, Tetsuro
    Oshika, Tetsuro
    Hasegawa, Takashi
    Kashiwagi, Kenji
    Miyake, Masahiro
    Sakamoto, Taiji
    Yoshitomi, Takeshi
    Inatani, Masaru
    Yamamoto, Tetsuya
    Sugiyama, Kazuhisa
    Nakamura, Makoto
    Tsujikawa, Akitaka
    Sotozono, Chie
    Sonoda, Koh-Hei
    Terasaki, Hiroko
    Ogura, Yuichiro
    Fukuchi, Takeo
    Shiraga, Fumio
    Nishida, Kohji
    Nakazawa, Toru
    Aihara, Makoto
    Yamashita, Hidetoshi
    Hiyoyuki, Iijima
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2019, 63 (03) : 276 - 283
  • [45] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193
  • [46] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [47] Evaluation of deep convolutional neural networks for glaucoma detection
    Sang Phan
    Shin’ichi Satoh
    Yoshioki Yoda
    Kenji Kashiwagi
    Tetsuro Oshika
    Japanese Journal of Ophthalmology, 2019, 63 : 276 - 283
  • [48] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153
  • [49] Deep Convolutional Neural Networks for Forest Fire Detection
    Zhang, Qingjie
    Xu, Jiaolong
    Xu, Liang
    Guo, Haifeng
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION, 2016, 47 : 568 - 575
  • [50] Smile detection in the wild with deep convolutional neural networks
    Chen, Junkai
    Ou, Qihao
    Chi, Zheru
    Fu, Hong
    MACHINE VISION AND APPLICATIONS, 2017, 28 (1-2) : 173 - 183