A staggered compact finite difference formulation for the compressible Navier-Stokes equations

被引:44
|
作者
Boersma, BJ [1 ]
机构
[1] Delft Univ Technol, Lab Aero & Hydrodynam, NL-2628 CD Delft, Netherlands
关键词
D O I
10.1016/j.jcp.2005.03.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a compact high order (up to 12th order) numerical method to solve the compressible Navier-Stokes equations will be presented. A staggered arrangement of the variables has been used. It is shown that the method is not only very accurate but numerically also very stable even in the case that not all the energy containing scales in the flow are resolved. This in contrast to standard (collocated) compact finite difference methods. Some results for a turbulent non-reacting and a reacting jet with a Reynolds number of 10,000 and a Mach number of 0.5 are reported. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:675 / 690
页数:16
相关论文
共 50 条
  • [41] A mimetic finite difference discretization for the incompressible Navier-Stokes equations
    Abba, A.
    Bonaventura, L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1101 - 1106
  • [42] FINITE-ELEMENT SOLUTIONS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS.
    Habashi, W.G.
    Peeters, M.F.
    Guevremont, G.
    Hafez, M.M.
    AIAA journal, 1987, 25 (07): : 944 - 948
  • [43] Compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations
    Li, M.
    Tang, T.
    Fornberg, B.
    International Journal for Numerical Methods in Fluids, 1995, 20 (10):
  • [44] A FINITE-DIFFERENCE SCHEME FOR THE NAVIER-STOKES EQUATIONS OF ONE-DIMENSIONAL, ISENTROPIC, COMPRESSIBLE FLOW
    ZARNOWSKI, R
    HOFF, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) : 78 - 112
  • [45] Positivity-preserving high order finite difference WENO schemes for compressible Navier-Stokes equations
    Fan, Chuan
    Zhang, Xiangxiong
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 467
  • [46] Two Dimensional Analysis of Hybrid Spectral/Finite Difference Schemes for Linearized Compressible Navier-Stokes Equations
    Tan, Raynold
    Ooi, Andrew
    Sandberg, Richard D.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [47] A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations
    Ben-Artzi, M
    Croisille, JP
    Fishelov, D
    Trachtenberg, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) : 640 - 664
  • [48] Stabilized formulation of the Navier-Stokes equations
    Masud, A
    ENGINEERING MECHANICS: PROCEEDINGS OF THE 11TH CONFERENCE, VOLS 1 AND 2, 1996, : 1135 - 1138
  • [49] Compact fourth-order finite volume method for numerical solutions of Navier-Stokes equations on staggered grids
    Hokpunna, Arpiruk
    Manhart, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) : 7545 - 7570
  • [50] Adaptive Petrov-Galerkin formulation for the compressible Euler and Navier-Stokes equations
    Laboratorio Nacional de Computacao, Cientifica, Rio de Janeiro, Brazil
    Comput Methods Appl Mech Eng, 1-2 (157-176):