Spatially-Varying Metric Learning for Diffeomorphic Image Registration: A Variational Framework

被引:0
|
作者
Vialard, Francois-Xavier [1 ]
Risser, Laurent [2 ]
机构
[1] Univ Paris 09, CEREMADE UMR 7534, F-75775 Paris 16, France
[2] CNRS, Inst Math Toulouse UMR 5219, Toulouse, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I | 2014年 / 8673卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a variational strategy to learn spatially-varying metrics on large groups of images, in the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework. Spatially-varying metrics we learn not only favor local deformations but also correlated deformations in different image regions and in different directions. In addition, metric parameters can be efficiently estimated using a gradient descent method. We first describe the general strategy and then show how to use it on 3D medical images with reasonable computational ressources. Our method is assessed on the 3D brain images of the LPBA40 dataset. Results are compared with ANTS-SyN and LDDMM with spatially-homogeneous metrics.
引用
收藏
页码:227 / +
页数:2
相关论文
共 50 条
  • [31] Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting
    Wang, Zian
    Philion, Jonah
    Fidler, Sanja
    Kautz, Jan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12518 - 12527
  • [32] A training-free recursive multiresolution framework for diffeomorphic deformable image registration
    Sheikhjafari, Ameneh
    Noga, Michelle
    Punithakumar, Kumaradevan
    Ray, Nilanjan
    APPLIED INTELLIGENCE, 2022, 52 (11) : 12546 - 12555
  • [33] Review of non-blind deconvolution image restoration based on spatially-varying PSF
    Hao Jian-kun
    Huang Wei
    Liu Jun
    He Yang
    CHINESE OPTICS, 2016, 9 (01): : 41 - 50
  • [34] A training-free recursive multiresolution framework for diffeomorphic deformable image registration
    Ameneh Sheikhjafari
    Michelle Noga
    Kumaradevan Punithakumar
    Nilanjan Ray
    Applied Intelligence, 2022, 52 : 12546 - 12555
  • [35] MULTISCALE APPROACH FOR VARIATIONAL PROBLEM JOINT DIFFEOMORPHIC IMAGE REGISTRATION AND INTENSITY CORRECTION: THEORY AND APPLICATION
    Chen, Peng
    Chen, Ke
    Han, Huan
    Zhang, Daoping
    MULTISCALE MODELING & SIMULATION, 2024, 22 (03): : 1097 - 1135
  • [36] A bi-variant variational model for diffeomorphic image registration with relaxed Jacobian determinant constraints
    Li, Yanyan
    Chen, Ke
    Chen, Chong
    Zhang, Jianping
    APPLIED MATHEMATICAL MODELLING, 2024, 130 : 66 - 93
  • [37] A Bayesian Framework for Image Segmentation With Spatially Varying Mixtures
    Nikou, Christophoros
    Likas, Aristidis C.
    Galatsanos, Nikolaos P.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) : 2278 - 2289
  • [38] One Noise to Rule Them All: Learning a Unified Model of Spatially-Varying Noise Patterns
    Maesumi, Arman
    Hu, Dylan
    Saripalli, Krishi
    Kim, Vladimir G.
    Fisher, Matthew
    Pirk, Soren
    Ritchie, Daniel
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):
  • [39] A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters
    Koutsourelakis, P. S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6184 - 6211
  • [40] A momentum-based diffeomorphic demons framework for deformable MR-CT image registration
    Han, R.
    De Silva, T.
    Ketcha, M.
    Uneri, A.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (21):