Localization of Eosinophilic Esophagitis from H&E stained images using multispectral imaging

被引:9
|
作者
Bautista, Pinky A. [1 ]
Yagi, Yukako [1 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
Tissue Component; Multispectral Imaging; Eosinophilic Esophagitis; Spectral Transmittance; Spectral Sample;
D O I
10.1186/1746-1596-6-S1-S2
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
This study is an initial investigation on the capability of multispectral imaging to capture subtle spectral information that would enable the automatic delineation between the eosinophilic esophagitis and other eosin stained tissue components, especially the RBCs. In the method, a principal component analysis (PCA) was performed on the spectral transmittance samples of the different tissue components, excluding however the transmittance samples of the eosinophilic esophagitis. From the average spectral error configuration of the eosinophilic esophagitis transmittance samples, i.e. the difference between the actual transmittance and the estimated transmittance using m PC vectors, we indentified two spectral bands by which we can localize the eosinophils. Initial results show the possibility of automatically localizing the eosinophilic esophagitis by utilizing spectral information.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Mixture of Learners for Cancer Stem Cell Detection Using CD13 and H&E Stained Images
    Oguz, Oguzhan
    Akbas, Cem Emre
    Mallah, Maen
    Tasdemir, Kasim
    Guzelcan, Ece Akhan
    Muenzenmayer, Christian
    Wittenberg, Thomas
    Uner, Aysegul
    Cetin, A. Enis
    Atalay, Rengul Cetin
    MEDICAL IMAGING 2016: DIGITAL PATHOLOGY, 2016, 9791
  • [32] Local Histograms for Classifying H&E Stained Tissues
    Massar, M. L.
    Bhagavatula, R.
    Fickus, M.
    Kovacevic, J.
    26TH SOUTHERN BIOMEDICAL ENGINEERING CONFERENCE: SBEC 2010, 2010, 32 : 348 - +
  • [33] Segmentation of epithelium in H&E stained odontogenic cysts
    Eramian, M.
    Daley, M.
    Neilson, D.
    Daley, T.
    JOURNAL OF MICROSCOPY, 2011, 244 (03) : 273 - 292
  • [34] Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images
    Bejnordi, Babak Ehteshami
    Balkenhol, Maschenka
    Litjens, Geert
    Holland, Roland
    Bult, Peter
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2141 - 2150
  • [35] Mitosis detection techniques in H&E stained breast cancer pathological images: A comprehensive review
    Pan, Xipeng
    Lu, Yinghua
    Lan, Rushi
    Liu, Zhenbing
    Qin, Zujun
    Wang, Huadeng
    Liu, Zaiyi
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 91
  • [36] Detection of Nuclei in H&E Stained Sections Using Convolutional Neural Networks
    Khoshdeli, Mina
    Cong, Richard
    Parvin, Bahram
    2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 105 - 108
  • [37] Blind colour separation of H&E stained histological images by linearly transforming the colour space
    Celis, R.
    Romo, D.
    Romero, E.
    JOURNAL OF MICROSCOPY, 2015, 260 (03) : 377 - 388
  • [38] Myofibre segmentation in H&E stained adult skeletal muscle images using coherence-enhancing diffusion filtering
    Harry Strange
    Ian Scott
    Reyer Zwiggelaar
    BMC Medical Imaging, 14
  • [39] MULTIFRACTAL FEATURE DESCRIPTOR FOR DIAGNOSING LIVER AND PROSTATE CANCERS IN H&E STAINED HISTOLOGIC IMAGES
    Atupelage, C.
    Nagahashi, H.
    Yamaguchi, M.
    Abe, T.
    Hashiguchi, A.
    Sakamoto, M.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 298 - 301
  • [40] Myofibre segmentation in H&E stained adult skeletal muscle images using coherence-enhancing diffusion filtering
    Strange, Harry
    Scott, Ian
    Zwiggelaar, Reyer
    BMC MEDICAL IMAGING, 2014, 14