A Comparison Principle for Parabolic Complex Monge-Ampere Equations

被引:0
|
作者
Do, Hoang-Son [1 ]
Thanh Cong Ngoc Pham [2 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi, Vietnam
[2] VNU Univ Sci, Dept Math, 334 Nguyen Trai, Hanoi, Vietnam
关键词
Viscosity solutions; Parabolic Monge-Ampere equation; Pluripotential theory; VISCOSITY SOLUTIONS; FLOWS;
D O I
10.1007/s12220-021-00748-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Cauchy-Dirichlet problem for parabolic complex Monge-Ampere equations on strongly pseudoconvex domains using the viscosity method. We prove a comparison principle for parabolic complex Monge-Ampere equations and use it to study the existence and uniqueness of viscosity solution in certain cases where the sets {z is an element of Omega : f(t, z) = 0} may be pairwise disjoint.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS
    Berman, Robert J.
    Boucksom, Sebastien
    Guedj, Vincent
    Zeriahi, Ahmed
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117): : 179 - 245
  • [22] Weak subsolutions to complex Monge-Ampere equations
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) : 727 - 738
  • [24] Geometric estimates for complex Monge-Ampere equations
    Fu, Xin
    Guo, Bin
    Song, Jian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 765 : 69 - 99
  • [25] Weak Solution of Parabolic Complex Monge-Ampere Equation
    Do Hoang Son
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (06) : 1949 - 1979
  • [26] Ancient solutions of exterior problem of parabolic Monge-Ampere equations
    Zhou, Ziwei
    Gong, Shuyu
    Bao, Jiguang
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) : 1605 - 1624
  • [27] Exterior problems of parabolic Monge-Ampere equations for n=2
    Dai, Limei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (08) : 1497 - 1506
  • [28] GEOMETRY OF MONGE-AMPERE EQUATIONS
    MORIMOTO, T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (01): : 25 - 28
  • [29] A COMPARISON PRINCIPLE FOR THE COMPLEX MONGE-AMPERE OPERATOR IN CEGRELL'S CLASSES AND APPLICATIONS
    Nguyen Van Khue
    Pham Hoang Hiep
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5539 - 5554
  • [30] Classification of Monge-Ampere Equations
    Kushner, Alexei G.
    DIFFERENTIAL EQUATIONS: GEOMETRY, SYMMETRIES AND INTEGRABILITY - THE ABEL SYMPOSIUM 2008, 2009, 5 : 223 - 256