The k-Szeged index of graphs

被引:1
|
作者
Deng, Hanyuan [1 ]
Xiao, Qiqi [1 ,2 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Steiner k-Wiener index; Szeged index; k-Szeged index; Revised k-Szeged index; Extremal graph; STEINER WIENER INDEX; UNICYCLIC GRAPHS; TREES;
D O I
10.1016/j.disc.2022.113076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on (revised) Szeged index of a graph and the Steiner k-Wiener index of a tree, we introduce the k-Szeged index Sz(k)(G) and revised k-Szeged index Sz(k)(*)(G) of a graph G =(V, E), defined as Sz(k)(*)(G) = Sigma(e=uv epsilon E(G)) Sigma(k-1)(i=1)(n(u)(e)+n(0)(e)/2 i) (n(v)(e)+n(0)(e)/2 k-i) and SZ(k) (G) = Sigma(e=uv epsilon E(G)) Sigma(k-1)(i=1) (n(u)(e) i) (n(u)(e) k-i) , where n(u)(e), n(v)(e) and n(0)(e) denote respectively the number of vertices of Glying closer to vertex uthan to vertex v, the number of vertices of Glying closer to vertex vthan to vertex uand the number of vertices with equal distance to uand v. In this paper, we first determine upper and lower bounds of (revised) k-Szeged indices of a connected graph Gin terms of the numbers of vertices, edges and pendant edges, and give Nordhaus-Gaddum-type results of (revised) k-Szeged indices. Then we determine the extremal value of these indices and the corresponding extremal graphs among all complete bipartite graphs with nvertices. Finally, we discuss the upper and lower bounds of these indices for unicyclic graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Graphs having the maximal value of the szeged index
    Dobrynin, AA
    CROATICA CHEMICA ACTA, 1997, 70 (03) : 819 - 825
  • [22] On the quotients between the (revised) Szeged index and Wiener index of graphs
    Li, Shuchao, 1600, Discrete Mathematics and Theoretical Computer Science (19):
  • [23] On the quotients between the (revised) Szeged index and Wiener index of graphs
    Zhang, Huihui
    Chen, Jing
    Li, Shuchao
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (01):
  • [24] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Aimei Yu
    Kun Peng
    Rong-Xia Hao
    Jiahao Fu
    Yingsheng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 651 - 672
  • [25] Bicyclic graphs with maximal edge revised Szeged index
    Lin, Mengmeng
    Chen, Lily
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 225 - 230
  • [26] Note on the graphs with the greatest edge-Szeged index
    Vukicevic, Damir
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (03) : 673 - 681
  • [27] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Yu, Aimei
    Peng, Kun
    Hao, Rong-Xia
    Fu, Jiahao
    Wang, Yingsheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 651 - 672
  • [28] Cactus graphs with minimum edge revised Szeged index
    Liu, Mengmeng
    Wang, Shujing
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 90 - 96
  • [29] On minimum revised edge Szeged index of bicyclic graphs
    Liu, Mengmeng
    Ji, Shengjin
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 249 - 254
  • [30] A lower bound of revised Szeged index of bicyclic graphs
    Ji, Shengjin
    Liu, Mengmeng
    Wu, Jianliang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 316 : 480 - 487