The k-Szeged index of graphs

被引:1
|
作者
Deng, Hanyuan [1 ]
Xiao, Qiqi [1 ,2 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Steiner k-Wiener index; Szeged index; k-Szeged index; Revised k-Szeged index; Extremal graph; STEINER WIENER INDEX; UNICYCLIC GRAPHS; TREES;
D O I
10.1016/j.disc.2022.113076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on (revised) Szeged index of a graph and the Steiner k-Wiener index of a tree, we introduce the k-Szeged index Sz(k)(G) and revised k-Szeged index Sz(k)(*)(G) of a graph G =(V, E), defined as Sz(k)(*)(G) = Sigma(e=uv epsilon E(G)) Sigma(k-1)(i=1)(n(u)(e)+n(0)(e)/2 i) (n(v)(e)+n(0)(e)/2 k-i) and SZ(k) (G) = Sigma(e=uv epsilon E(G)) Sigma(k-1)(i=1) (n(u)(e) i) (n(u)(e) k-i) , where n(u)(e), n(v)(e) and n(0)(e) denote respectively the number of vertices of Glying closer to vertex uthan to vertex v, the number of vertices of Glying closer to vertex vthan to vertex uand the number of vertices with equal distance to uand v. In this paper, we first determine upper and lower bounds of (revised) k-Szeged indices of a connected graph Gin terms of the numbers of vertices, edges and pendant edges, and give Nordhaus-Gaddum-type results of (revised) k-Szeged indices. Then we determine the extremal value of these indices and the corresponding extremal graphs among all complete bipartite graphs with nvertices. Finally, we discuss the upper and lower bounds of these indices for unicyclic graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On revised Szeged index of graphs
    Shahani, Hossein
    Ashrafi, Ali Reza
    Gutman, Ivan
    UTILITAS MATHEMATICA, 2014, 95 : 281 - 288
  • [2] The Szeged and the Wiener index of graphs
    Klavzar, S
    Rajapakse, A
    Gutman, I
    APPLIED MATHEMATICS LETTERS, 1996, 9 (05) : 45 - 49
  • [3] Szeged index of symmetric graphs
    Zerovnik, J
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (01): : 77 - 80
  • [4] On the Szeged Index of monocyclic graphs
    Khadikar, PV
    Kale, PP
    Deshpande, NV
    Agrawal, VK
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2000, 77 (09) : 449 - 452
  • [6] On the edge Szeged index of bridge graphs
    Xing, Rundan
    Zhou, Bo
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (9-10) : 489 - 492
  • [7] Edge Szeged Index of Unicyclic Graphs
    Cai, Xiaochun
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 133 - 144
  • [8] SZEGED INDEX OF A CLASS OF UNICYCLIC GRAPHS
    Qi, Xuli
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1139 - 1155
  • [9] Steiner (Revised) Szeged Index of Graphs
    Ghorbani, Modjtaba
    Li, Xueliang
    Maimani, Hamid Reza
    Mao, Yaping
    Rahmani, Shaghayegh
    Rajabi-Parsa, Mina
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (03) : 733 - 742
  • [10] On Extremal Graphs of Weighted Szeged Index
    Bok, Jan
    Furtula, Boris
    Jedlickova, Nikola
    Skrekovski, Riste
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (01) : 93 - 109