A method for reducing garbage collection overhead of SSD using machine learning algorithms

被引:0
|
作者
Park, Jung Kyu [1 ]
Kim, Jaeho [2 ]
机构
[1] Seoul Womens Univ, Dept Digital Media Design & Applicat, Seoul 01797, South Korea
[2] UNIST, Sch Elect & Comp Engn, Ulsan 44919, South Korea
关键词
Garbage Collection; Machine Learning; SSD; TRIM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we attempt to manage GC overhead at the operating system level. In our approach, first, we use a machine learning technique to devise a GC detecting mechanism at the operating system level, and second, we show that by making use of this mechanism performance variance normally observed on SSDs can be reduced. We develop a GC-detector that detects garbage collection of SSDs and request TRIM operations to the SSD when GC is detected. Experimental results running the GC detector show increase average bandwidth and low performance variance compared to when not using GC-detector.
引用
收藏
页码:775 / 777
页数:3
相关论文
共 50 条
  • [41] Mindful Machine Learning Using Machine Learning Algorithms to Predict the Practice of Mindfulness
    Sauer, Sebastian
    Buettner, Ricardo
    Heidenreich, Thomas
    Lemke, Jana
    Berg, Christoph
    Kurz, Christoph
    EUROPEAN JOURNAL OF PSYCHOLOGICAL ASSESSMENT, 2018, 34 (01) : 6 - 13
  • [42] Stock Prediction Using Machine Learning Algorithms
    Kohli, Pahul Preet Singh
    Zargar, Seerat
    Arora, Shriya
    Gupta, Parimal
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 405 - 414
  • [43] Petrofacies classification using machine learning algorithms
    Silva A.A.
    Tavares M.W.
    Carrasquilla A.
    Misságia R.
    Ceia M.
    Silva, Adrielle A. (adrielle@lenep.uenf.br), 1600, Society of Exploration Geophysicists (85): : WA101 - WA113
  • [44] Estimating Deforestation using Machine Learning Algorithms
    Nichols, Keanu
    Hosein, Patrick
    2021 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT DATA SCIENCE TECHNOLOGIES AND APPLICATIONS (IDSTA), 2021, : 82 - 87
  • [45] Petrofacies classification using machine learning algorithms
    Silva, Adrielle A.
    Tavares, Monica W.
    Carrasquilla, Abel
    Missagia, Roseane
    Ceia, Marco
    GEOPHYSICS, 2020, 85 (04) : WA101 - WA113
  • [46] To Identify Malware Using Machine Learning Algorithms
    Pujari, Shivam
    Mandoria, H. L.
    Shrivastava, R. P.
    Singh, Rajesh
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 117 - 127
  • [47] Classifying Ransomware Using Machine Learning Algorithms
    Egunjobi, Samuel
    Parkinson, Simon
    Crampton, Andrew
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2019), PT II, 2019, 11872 : 45 - 52
  • [48] Ransomware detection using machine learning algorithms
    Bae, Seong Il
    Lee, Gyu Bin
    Im, Eul Gyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18):
  • [49] Face Recognition using Machine Learning Algorithms
    Dastgiri, Amirhosein
    Jafarinamin, Pouria
    Kamarbaste, Sami
    Gholizade, Mahdi
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (03): : 216 - 233
  • [50] Sentiment Analysis Using Machine Learning Algorithms
    Jemai, Fatma
    Hayouni, Mohamed
    Baccar, Sahbi
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 775 - 779