A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)

被引:42
|
作者
Gu, Jiaze [1 ]
Liang, Hualiang [2 ]
Ge, Xianping [1 ,2 ]
Xia, Dong [2 ]
Pan, Liangkun [2 ]
Mi, Haifeng [3 ]
Ren, Mingchun [1 ,2 ]
机构
[1] Nanjing Agr Univ, Wuxi Fisheries Coll, Wuxi 214081, Jiangsu, Peoples R China
[2] Chinese Acad Fishery Sci CAFS, Freshwater Fisheries Res Ctr FFRC, Wuxi 214081, Jiangsu, Peoples R China
[3] Tongwei Co Ltd, Hlth Aquaculture Key Lab Sichuan Prov, Chengdu 610093, Peoples R China
关键词
Tenebrio molitor; Micropterus salmoides; Growth performance; Feed utilization; Intestine immune; ALTERNATIVE PROTEIN-SOURCE; BODY-COMPOSITION; DIETARY INCLUSION; ENZYME-ACTIVITIES; PRACTICAL DIETS; AFRICAN CATFISH; LARVAE MEAL; PERFORMANCE; SUPPLEMENTATION; INFLAMMATION;
D O I
10.1016/j.fsi.2021.11.024
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study aimed to evaluate the effects of partial replacement of fish meal (FM) with yellow mealworm (Tenebrio molitor, TM) on the growth performance, food utilization and intestinal immune response of juvenile largemouth bass (Micropterus salmoides). Seven diets containing increasing levels of TM (FM substitution) were designed (approximately 0% (0%), 4% (11.1%), 8.1% (22.2%), 12.2% (33.3%), 16.3% (44.4%), 20.4% (55.5%), and 24.5% (66.6%), designated TM0, TM11, TM22, TM33, TM44, TM55, and TM66, respectively). 420 fish were randomly selected and placed in 21 cages (1 m*1 m*1 m, 7 treatments for triplicate, 20 fish per cage). Fish (initial weight 6.25 +/- 0.03 g) were fed seven isonitrogenous (47%) and isocaloric (19 MJ kg(-1)) diets to satiety twice daily for 8 weeks. Compared to the control group (TM0), TM11 showed no significant difference in the weight gain rate (WGR), specific growth rate (SGR) or feed conversion ratio (FCR), while all other TM inclusion groups presented different degrees of decline. There was no significant difference in the whole-body composition among all groups (P 0.05). Plasma total protein (TP), triglyceride (TG) and albumin (ALB) contents were significantly decreased in TM55 and TM66 (P < 0.05). The highest plasma aspartate transaminase (AST) activity was observed in TM66 (P < 0.05). TM33, TM44 and TM55 showed the lowest activities of plasma alanine amiotransferase (ALT) and alkaline phosphatase (ALP) (P < 0.05). Moreover, increased mRNA levels of superoxide dismutase (SOD) and catalase (CAT) were measured in the TM11 to TM55 groups, while intestinal SOD activity peaked in TM11 (P < 0.05). With the exception of TM11, the other TM inclusion groups showed significant inhibition of the relative expression of RelA, C3 and TNF-alpha (P < 0.05). All experimental groups exhibited lower expression of IL-10 than TM0 (P < 0.05). The TM11 group showed significantly upregulated expression of IL-1 beta and TGF-beta (P < 0.05). In addition, TLR2 expression was increased in TM11 and TM22 (P < 0.05). Considering enzyme activities and immune-related gene expression, TM supplementation levels should not exceed 4% (TM11).
引用
下载
收藏
页码:214 / 221
页数:8
相关论文
共 50 条
  • [41] Effects of three tested medicinal plant extracts on growth, immune function and microflora in juvenile largemouth bass (Micropterus salmoides )
    Yue, Rongyan
    Dong, Wenjing
    Feng, Zhuandong
    Jin, Tao
    Wang, Wenjuan
    He, Yuanfa
    Chen, Yongjun
    Lin, Shimei
    AQUACULTURE REPORTS, 2024, 36
  • [42] Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass (Micropterus salmoides)
    He, Xuanshu
    Chen, Anqi
    Liao, Zhihong
    Zhong, Jian
    Cheng, Anda
    Xue, Xinghua
    Li, Fuyuan
    Chen, Mengdie
    Yao, Rong
    Zhao, Wei
    Niu, Jin
    AQUACULTURE NUTRITION, 2024, 2024
  • [43] Effect of Replacing Fish Meal Using Fermented Soybean Meal on Growth Performance, Intestine Bacterial Diversity, and Key Gene Expression of Largemouth Bass (Micropterus salmoides)
    Weng, Longfei
    Wang, Zhi
    Zhuang, Wei
    Yang, Tiezhu
    Xu, Xinxin
    Liu, Jinle
    Liu, Jixiang
    Xu, Zhengzhong
    Chen, Ruitao
    Wang, Qi
    Wang, Shilei
    Cai, Yafan
    Ying, Hanjie
    FERMENTATION-BASEL, 2023, 9 (06):
  • [44] Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides
    Ma, Hui-Jia
    Mou, Ming-Ming
    Pu, De-Cheng
    Lin, Shi-Mei
    Chen, Yong-Jun
    Luo, Li
    AQUACULTURE, 2019, 498 : 482 - 487
  • [45] Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass (Micropterus salmoides)
    Qian, Pengcheng
    Liu, Yan
    Zhang, Hao
    Zhang, Penghui
    Xie, Yuanyuan
    Wu, Chenglong
    ANIMALS, 2024, 14 (10):
  • [46] Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides)
    Yang, Hang
    Bian, Yuhao
    Huang, Lingling
    Lan, Qing
    Ma, Lizhou
    Li, Xiaoqin
    Leng, Xiangjun
    AQUACULTURE REPORTS, 2022, 22
  • [47] Effects of Fermented Soybean Meal Substituting Plant Protein and Fish Meal on Growth, Flesh Quality, and Intestinal Microbiota of Largemouth Bass (Micropterus salmoides)
    Guo, Beibei
    Huang, Lingling
    Li, Xiaoqin
    Chen, Yunfeng
    Huang, Tianyu
    Ma, Lizhou
    Leng, Xiangjun
    AQUACULTURE NUTRITION, 2023, 2023
  • [48] Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides)
    Gong, Yulong
    Yang, Fan
    Hu, Junpeng
    Liu, Cui
    Liu, Haokun
    Han, Dong
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Yi, Jianhua
    Xie, Shouqi
    FISH & SHELLFISH IMMUNOLOGY, 2019, 94 : 548 - 557
  • [49] Effects of herbal extracts (Foeniculum vulgare and Artemisia annua) on growth, liver antioxidant capacity, intestinal morphology and microorganism of juvenile largemouth bass, Micropterus salmoides
    He, Guanglun
    Sun, Hao
    Liao, Ruisheng
    Wei, Yexin
    Zhang, Tingting
    Chen, Yongjun
    Lin, Shimei
    AQUACULTURE REPORTS, 2022, 23
  • [50] Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax
    Henry, M. A.
    Gasco, L.
    Chatzifotis, S.
    Piccolo, G.
    DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY, 2018, 81 : 204 - 209