Supervised Collective Classification for Crowdsourcing

被引:0
|
作者
Chen, Pin-Yu [1 ]
Lien, Chia-Wei [2 ]
Chu, Fu-Jen [3 ]
Ting, Pai-Shun [1 ]
Cheng, Shin-Ming [4 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Amazon Corp LLC, Seattle, WA USA
[3] Georgia Inst Technol, Inst Robot & Intelligent Machines, Atlanta, GA 30332 USA
[4] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat, Taipei, Taiwan
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Crowdsourcing utilizes the wisdom of crowds for collective classification via information (e.g., labels of an item) provided by labelers. Current crowdsourcing algorithms are mainly unsupervised methods that are unaware of the quality of crowdsourced data. In this paper, we propose a supervised collective classification algorithm that aims to identify reliable labelers from the training data (e.g., items with known labels). The reliability (i.e., weighting factor) of each labeler is determined via a saddle point algorithm. The results on several crowdsourced data show that supervised methods can achieve better classification accuracy than unsupervised methods, and our proposed method outperforms other algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Crowdsourcing for Chromosome Segmentation and Deep Classification
    Sharma, Monika
    Saha, Oindrila
    Sriraman, Anand
    Hebbalaguppe, Ramya
    Vig, Lovekesh
    Karande, Shirish
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 786 - 793
  • [22] Robust Sparse Weighted Classification for Crowdsourcing
    Yu, Hao
    Zhang, Chengyuan
    Li, Jiaye
    Zhang, Shichao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8490 - 8502
  • [23] Supervised learning for classification
    Li, HY
    Chen, WB
    Shen, IF
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 49 - 57
  • [24] Human-supervised clustering of multidimensional data using crowdsourcing
    Butyaev, Alexander
    Drogaris, Chrisostomos
    Tremblay-Savard, Olivier
    Waldispuehl, Jerome
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [25] SenseCityVity: Mobile Crowdsourcing, Urban Awareness, and Collective Action in Mexico
    Ruiz-Correa, Salvador
    Santani, Darshan
    Ramirez-Salazar, Beatriz
    Ruiz-Correa, Itzia
    Alba Rendon-Huerta, Fatima
    Olmos-Carrillo, Carlo
    Carmina Sandoval-Mexicano, Brisa
    Humberto Arcos-Garcia, Angel
    Hasimoto-Beltran, Rogelio
    Gatica-Perez, Daniel
    IEEE PERVASIVE COMPUTING, 2017, 16 (02) : 44 - 53
  • [26] Collective Creativity through a Micro-Tasks Crowdsourcing Approach
    Girotto, Victor
    PROCEEDINGS OF THE 19TH ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING COMPANION, 2016, : 143 - 146
  • [27] MediaServ: Subscription-based Media Crowdsourcing for Collective Events
    Rizvi, A. S. M.
    Ahmed, Shamir
    Bashir, Minhajul
    Uddin, Md. Yusuf Sarwar
    2016 5TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS AND VISION (ICIEV), 2016, : 897 - 902
  • [28] Understanding Collective Reflection in Crowdsourcing for Innovation: A Semantic Network Approach
    Sun, Yao
    Majchrzak, Ann
    Malhotra, Arvind
    PROCEEDINGS OF THE 54TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2021, : 5151 - 5161
  • [29] A crowdsourcing approach to advance collective awareness and social good practices
    Dimitriadis, Ilias
    Psomiadis, Vasileios G.
    Vakali, Athena
    2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE WORKSHOPS (WI 2019 COMPANION), 2019, : 200 - 207
  • [30] Recurrent collective classification
    Shuangfei Fan
    Bert Huang
    Knowledge and Information Systems, 2019, 60 : 741 - 755