Improved approximate Bayesian computation methods via empirical likelihood
被引:2
|
作者:
Dmitrieva, Tatiana
论文数: 0引用数: 0
h-index: 0
机构:
Advocate Aurora Hlth, 3075 Highland Pkwy,Suite 600, Downers Grove, IL 60515 USAAdvocate Aurora Hlth, 3075 Highland Pkwy,Suite 600, Downers Grove, IL 60515 USA
Dmitrieva, Tatiana
[1
]
McCullough, Kristin
论文数: 0引用数: 0
h-index: 0
机构:
Grand View Univ, 1200 Grandview Ave, Des Moines, IA 50316 USAAdvocate Aurora Hlth, 3075 Highland Pkwy,Suite 600, Downers Grove, IL 60515 USA
McCullough, Kristin
[2
]
论文数: 引用数:
h-index:
机构:
Ebrahimi, Nader
[3
]
机构:
[1] Advocate Aurora Hlth, 3075 Highland Pkwy,Suite 600, Downers Grove, IL 60515 USA
[2] Grand View Univ, 1200 Grandview Ave, Des Moines, IA 50316 USA
[3] Northern Illinois Univ, 1425 Lincoln Hwy, De Kalb, IL 60115 USA
Bayesian inference;
ABC;
Likelihood-free methods;
Empirical likelihood ratio test;
D O I:
10.1007/s00180-020-00985-1
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Approximate Bayesian Computation (ABC) is a method of statistical inference that is used for complex models where the likelihood function is intractable or computationally difficult, but can be simulated by a computer model. As proposed by Mengersen et al. (Proc Natl Acad Sci 110(4):1321-1326, 2013), when additional information about the parameter of interest is available, empirical likelihood techniques can be used in place of model simulation. In this paper we propose an improvement to Mengersen et al. (2013) ABC via empirical likelihood algorithm through the addition of a testing procedure. We demonstrate the effectiveness of our proposed method through a nanotechnology application where we assess the reliability of nanowires. The efficiency and improved accuracy is shown through simulation analysis.
机构:
Univ Oxford, Math Inst, Wolfson Ctr Math Biol, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, EnglandUniv Oxford, Math Inst, Wolfson Ctr Math Biol, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England