Image reconstruction using symmetric convolution and discrete trigonometric transforms

被引:4
|
作者
Foltz, TM [1 ]
Welsh, BM [1 ]
机构
[1] USAF, Inst Technol, Wright Patterson AFB, OH 45433 USA
关键词
D O I
10.1364/JOSAA.15.002827
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate how the symmetric convolution-multiplication property of the discrete trigonometric transforms can be applied to problems in image reconstruction. This property allows for linear filtering of degraded images by means of point-by-point multiplication in the transform domain of trigonometric transforms. Specifically, in the transform domain of a type II discrete cosine transform, there is an asymptotically optimum energy compaction near d.c. for highly correlated images, which has advantages in reconstructing images with high-frequency noise. The symmetric convolution-multiplication property allows for scalar representations in the transform-domain space of discrete trigonometric transforms for linear reconstruction filters such as the Wiener filter. An analysis of the scalar Wiener filter's performance in the trigonometric transform domain is given. (C) 1998 Optical Society of America. [S0740-3232(98)00511-0]. OCIS codes: 100.0100, 100.1830, 100.2000, 100.2960, 100.2980, 100.3020.
引用
收藏
页码:2827 / 2840
页数:14
相关论文
共 50 条
  • [21] IMAGE RECONSTRUCTION USING FRACTIONAL FOURIER-TRANSFORMS
    KHARE, RS
    [J]. CURRENT SCIENCE, 1974, 43 (23): : 743 - 744
  • [22] Recursive formulation of short-time discrete trigonometric transforms
    Macias, JAR
    Exposito, AG
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (04): : 525 - 527
  • [23] Image filtering in the block DCT domain using symmetric convolution
    Viswanath, K.
    Mukherjee, Jayanta
    Biswas, P. K.
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2011, 22 (02) : 141 - 152
  • [24] The discrete trigonometric transforms and their fast algorithms:: An algebraic symmetry perspective
    Püschel, M
    Moura, JMF
    [J]. PROCEEDINGS OF THE 2002 IEEE 10TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND SIGNAL PROCESSING EDUCATION WORKSHOP, 2002, : 268 - 273
  • [25] An efficient unified systolic architecture for the computation of discrete trigonometric transforms
    Fang, WH
    Wu, ML
    [J]. ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 2092 - 2095
  • [26] Enhancing Mersenne transforms by RNS with application to discrete convolution
    Talahmeh, S
    Siy, P
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1997, 28 (04) : 423 - 427
  • [27] Evolved transforms for image reconstruction
    Moore, F
    Marshall, P
    Balster, E
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2310 - 2316
  • [28] AI transforms image reconstruction
    Rita Strack
    [J]. Nature Methods, 2018, 15 : 309 - 309
  • [29] AI transforms image reconstruction
    Strack, Rita
    [J]. NATURE METHODS, 2018, 15 (05) : 309 - 309
  • [30] Satellite Image Fusion using Fast Discrete Curvelet Transforms
    Rao, C. V.
    Rao, J. Malleswara
    Kumar, A. Senthil
    Jain, D. S.
    Dadhwal, V. K.
    [J]. SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 952 - 957