Across the Stack Opportunities for Deep Learning Acceleration

被引:0
|
作者
Srinivasan, Vijayalakshmi [1 ]
Fleischer, Bruce [1 ]
Shukla, Sunil [1 ]
Ziegler, Matthew [1 ]
Silberman, Joel [1 ]
Oh, Jinwook [1 ]
Choi, Jungwook [1 ]
Mueller, Silvia
Agrawal, Ankur [1 ]
Babinsky, Tina
Cao, Nianzheng [1 ]
Chen, Chia-Yu [1 ]
Chuang, Pierce [1 ]
Fox, Thomas [1 ]
Gristede, George [1 ]
Guillorn, Michael [1 ]
Haynie, Howard [1 ]
Klaiber, Michael
Lee, Dongsoo [1 ]
Lo, Shih-Hsien [1 ]
Maier, Gary
Scheuermann, Michael [1 ]
Venkataramani, Swagath [1 ]
Vezyrtzis, Christos [1 ]
Wang, Naigang [1 ]
Yee, Fanchieh [1 ]
Zhou, Ching [1 ]
Lu, Pong-Fei [1 ]
Curran, Brian [2 ]
Chang, Leland [1 ]
Gopalakrishnan, Kailash [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] IBM Syst Grp, Poughkeepsie, NY USA
关键词
Deep Learning Accelerators; DNN Optimizations; DL Training; DL inference;
D O I
10.1145/3218603.3241339
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:200 / +
页数:2
相关论文
共 50 条
  • [41] Distributed deep reinforcement learning method using profit sharing for learning acceleration
    Kodama, Naoki
    Harada, Taku
    Miyazaki, Kazuteru
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (08) : 1188 - 1196
  • [42] Deep graph learning in molecular docking: Advances and opportunities
    Sanchez-Cruz, Norberto
    ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES, 2023, 3
  • [43] A survey on deep learning for cybersecurity: Progress, challenges, and opportunities
    Macas, Mayra
    Wu, Chunming
    Fuertes, Walter
    COMPUTER NETWORKS, 2022, 212
  • [44] XSP: Across-Stack Profiling and Analysis of Machine Learning Models on GPUs
    Li, Cheng
    Dakkak, Abdul
    Xiong, Jinjun
    Wei, Wei
    Xu, Lingjie
    Hwu, Wen-mei
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, : 326 - 337
  • [45] Deep learning for intelligent IoT: Opportunities, challenges and solutions
    Bin Zikria, Yousaf
    Afzal, Muhammad Khalil
    Kim, Sung Won
    Marin, Andrea
    Guizani, Mohsen
    COMPUTER COMMUNICATIONS, 2020, 164 : 50 - 53
  • [46] Deep Learning for Wireless Physical Layer: Opportunities and Challenges
    Tianqi Wang
    Chao-Kai Wen
    Hanqing Wang
    Feifei Gao
    Tao Jiang
    Shi Jin
    中国通信, 2017, 14 (11) : 92 - 111
  • [47] Deep Learning for Community Detection: Progress, Challenges and Opportunities
    Liu, Fanzhen
    Xue, Shan
    Wu, Jia
    Zhou, Chuan
    Hu, Wenbin
    Paris, Cecile
    Nepal, Surya
    Yang, Jian
    Yu, Philip S.
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 4981 - 4987
  • [48] Opportunities and challenges for deep learning in cell dynamics research
    Chai, Binghao
    Efstathiou, Christoforos
    Yue, Haoran
    Draviam, Viji M.
    TRENDS IN CELL BIOLOGY, 2024, 34 (11) : 955 - 967
  • [49] Deep Learning for Anomaly Detection: Challenges, Methods, and Opportunities
    Pang, Guansong
    Cao, Longbing
    Aggarwal, Charu
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1127 - 1130
  • [50] A comprehensive review on ensemble deep learning: Opportunities and challenges
    Mohammed, Ammar
    Kora, Rania
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (02) : 757 - 774