MULTIVARIATE SPLINE ESTIMATION AND INFERENCE FOR IMAGE-ON-SCALAR REGRESSION

被引:5
|
作者
Yu, Shan [1 ]
Wang, Guannan [2 ]
Wang, Li [3 ]
Yang, Lijian [4 ,5 ]
机构
[1] Univ Virginia, Dept Stat, Charlottesville, VA 22904 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Iowa State Univ, Dept Stat & Stat Lab, Ames, IA 50011 USA
[4] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Coefficient maps; confidence corridors; image analysis; multivariate splines; triangulation; VARYING COEFFICIENT MODELS; CONVERGENCE-RATES; NEUROIMAGING DATA;
D O I
10.5705/ss.202019.0188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by recent analyses of data in biomedical imaging studies, we consider a class of image-on-scalar regression models for imaging responses and scalar predictors. We propose using flexible multivariate splines over triangulations to handle the irregular domain of the objects of interest on the images, as well as other characteristics of images. The proposed estimators of the coefficient functions are proved to be root-n consistent and asymptotically normal under some regularity conditions. We also provide a consistent and computationally efficient estimator of the covariance function. Asymptotic pointwise confidence intervals and data-driven simultaneous confidence corridors for the coefficient functions are constructed. Our method can simultaneously estimate and make inferences on the coefficient functions, while incorporating spatial heterogeneity and spatial correlation. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method, which is then applied to the spatially normalized positron emission tomography data of the Alzheimer's Disease Neuroimaging Initiative.
引用
收藏
页码:1463 / 1487
页数:25
相关论文
共 50 条
  • [21] Estimation and inference for dependence in multivariate data
    Bodnar, Olha
    Bodnar, Taras
    Gupta, Arjun K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (04) : 869 - 881
  • [22] Estimation and inference in multivariate Markov chains
    João Nicolau
    Flavio Ivo Riedlinger
    Statistical Papers, 2015, 56 : 1163 - 1173
  • [23] Estimation of a regression spline sample selection model
    Marra, Giampiero
    Radice, Rosalba
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 158 - 173
  • [24] Spline Regression Hashing for Fast Image Search
    Liu, Yang
    Wu, Fei
    Yang, Yi
    Zhuang, Yueting
    Hauptmann, Alexander G.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (10) : 4480 - 4491
  • [25] Regression function estimation using spline wavelets
    Uddin, MK
    Naik-Nimbalkar, UV
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (04) : 823 - 832
  • [26] FITTING MULTIVARIATE REGRESSION-FUNCTIONS BY INTERACTION SPLINE MODELS
    CHEN, ZH
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (02): : 473 - 491
  • [27] Visibility: An investigation based on a multivariate adaptive regression spline technique
    Taliani, Marco
    Siani, Anna Maria
    Palmieri, Sabino
    Meteorological Applications, 1996, 3 (04) : 353 - 358
  • [28] Preference Learning with Evolutionary Multivariate Adaptive Regression Spline Model
    Abou-Zleikha, Mohamed
    Shaker, Noor
    Christensen, Mads Graesboll
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2184 - 2191
  • [29] Multivariate adaptive regression spline (MARS) analysis of schizophrenia genotypes
    York, TP
    Sullivan, P
    Webb, BT
    Kendler, KS
    Riley, B
    Straub, RE
    Eaves, LJ
    AMERICAN JOURNAL OF MEDICAL GENETICS, 2002, 114 (07): : 879 - 879
  • [30] CG-Lasso Estimator for Multivariate Adaptive Regression Spline
    Taylan, Pakize
    Weber, Gerhard Wilhelm
    MATHEMATICAL METHODS IN ENGINEERING: APPLICATIONS IN DYNAMICS OF COMPLEX SYSTEMS, 2019, 24 : 121 - 136