Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni,N-doped Carbon Catalysts

被引:169
|
作者
Koshy, David M. [1 ]
Chen, Shucheng [1 ]
Lee, Dong Un [1 ]
Stevens, Michaela Burke [1 ]
Abdellah, Ahmed M. [2 ]
Dull, Samuel M. [1 ]
Chen, Gan [3 ]
Nordlund, Dennis [4 ]
Gallo, Alessandro [5 ]
Hahn, Christopher [5 ]
Higgins, Drew C. [2 ]
Bao, Zhenan [1 ]
Jaramillo, Thomas F. [1 ,5 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[2] McMaster Univ, Dept Chem Engn, Hamilton, ON, Canada
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Synchotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[5] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 美国国家科学基金会;
关键词
CO2; reduction; electrocatalysis; heterogeneous Catalysis; doped carbon; X-ray absorption spectroscopy; ELECTROCHEMICAL REDUCTION; DIOXIDE; SPECTROSCOPY; PERFORMANCE; SITES; ORR; ELECTROCATALYSTS; POLYANILINE; CHALLENGES; PYROLYSIS;
D O I
10.1002/anie.201912857
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni,N-doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen-coordinated, single Ni atom active sites. However, experimentally confirming Ni-N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile-derived Ni,N-doped carbon electrocatalysts (Ni-PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X-ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square-planar geometry that strongly resembles the active sites of molecular metal-porphyrin catalysts.
引用
收藏
页码:4043 / 4050
页数:8
相关论文
共 50 条
  • [31] A N-doped carbon-supported In2O3 catalyst for highly efficient CO2 electroreduction to HCOOH
    Zhang, Jie
    Liang, Manfen
    Xu, Haimei
    Huang, Hong
    Meng, Jian
    Mu, Jinglin
    Miao, Zhichao
    Zhou, Jin
    CHEMICAL COMMUNICATIONS, 2024, 60 (12) : 1587 - 1590
  • [32] Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts
    Han, Hyunsu
    Noh, Yuseong
    Kim, Yoongon
    Park, Seongmin
    Yoon, Woongeun
    Jang, Daehee
    Choi, Sung Mook
    Kim, Won Bae
    GREEN CHEMISTRY, 2020, 22 (01) : 71 - 84
  • [33] Ni nanoparticle-decorated-MnO2 nanodendrites as highly selective and efficient catalysts for CO2 electroreduction
    He, Xu-Jun
    Feng, Jin-Xian
    Ren, Qian
    Li, Gao-Ren
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) : 19438 - 19444
  • [34] Fe-Ni Nanoparticles on N-doped Carbon as Catalysts for Electrocatalytic Reduction of CO2 to Tune CO/H2 Ratio
    Yue, Tingting
    Chang, Ying
    Liu, Jiamin
    Jia, Jingchun
    Jia, Meilin
    CHEMELECTROCHEM, 2021, 8 (22) : 4233 - 4239
  • [35] Powerful CO2 electroreduction performance with N-carbon doped with single Ni atoms
    Yuan, Cheng-Zong
    Liang, Kuang
    Xia, Xian-Ming
    Yang, Zheng Kun
    Jiang, Yi-Fan
    Zhao, Tan
    Lin, Cong
    Cheang, Tuck-Yun
    Zhong, Sheng-Liang
    Xu, An-Wu
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (14) : 3669 - 3674
  • [36] Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction
    Shi, Han
    Cheng, Yingying
    Kang, Peng
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (03) : 269 - 277
  • [37] Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction
    Han Shi
    Yingying Cheng
    Peng Kang
    Transactions of Tianjin University, 2021, 27 : 269 - 277
  • [38] MOF-Derived N-Doped Carbon-Wrapped Ni Electrocatalyst for Highly Efficient Electrochemical CO2 Reduction to CO
    Guo, Minglong
    Du, Shengjun
    Yang, Guangxing
    Zhang, Qiao
    Liu, Zhiting
    Peng, Feng
    ENERGY & FUELS, 2024, 38 (12) : 11043 - 11050
  • [39] Boosting CO2 Electroreduction on N,P-Co-doped Carbon Aerogels
    Chen, Chunjun
    Sun, Xiaofu
    Yan, Xupeng
    Wu, Yahui
    Liu, Huizhen
    Zhu, Qinggong
    Bediako, Bernard Baffour Asare
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) : 11123 - 11129
  • [40] Theoretical study on the C-C coupling mechanism of CO2 electroreduction on bimetallic sites embedded in N-doped carbon catalysts
    Gao, Hui
    Jin, Peng
    MOLECULAR CATALYSIS, 2024, 567