Densities of Currents on Non-Kahler Manifolds

被引:4
|
作者
Vu, Duc-Viet [1 ,2 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
关键词
TOPOLOGICAL-ENTROPY; SUPER-POTENTIALS; PERIODIC POINTS; NUMBER;
D O I
10.1093/imrn/rnz270
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a natural generalization of the Dinh-Sibony notion of density currents in the setting where the ambient manifold is not necessarily Kahler. As an application, we show that the algebraic entropy of meromorphic self-maps of compact complex surfaces is a finite bi-meromorphic invariant.
引用
收藏
页码:13282 / 13304
页数:23
相关论文
共 50 条
  • [21] Geometric transitions, flops and non-Kahler manifolds: II
    Becker, M
    Dasgupta, K
    Katz, S
    Knauf, A
    Tatar, R
    NUCLEAR PHYSICS B, 2006, 738 (1-2) : 124 - 183
  • [22] Geometric transitions, flops and non-Kahler manifolds: I
    Becker, M
    Dasgupta, K
    Knauf, A
    Tatar, R
    NUCLEAR PHYSICS B, 2004, 702 (1-2) : 207 - 268
  • [23] SMALL DEFORMATIONS OF A CLASS OF COMPACT NON-KAHLER MANIFOLDS
    ALESSANDRINI, L
    BASSANELLI, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) : 1059 - 1062
  • [24] QUANTITATIVE AND QUALITATIVE COHOMOLOGICAL PROPERTIES FOR NON-KAHLER MANIFOLDS
    Angella, Daniele
    Tardini, Nicoletta
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 273 - 285
  • [25] The non-abelian Hodge correspondence on some non-Kahler manifolds
    Pan, Changpeng
    Zhang, Chuanjing
    Zhang, Xi
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2545 - 2588
  • [26] On non-Kahler compact complex manifolds with balanced and astheno-Kahler metrics
    Latorre, Adela
    Ugarte, Luis
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 90 - 93
  • [27] Compactifications of heterotic theory on non-Kahler complex manifolds, I
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (04):
  • [28] COMPATIBILITY BETWEEN NON-KaHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS
    Ornea, L.
    Otiman, A-, I
    Stanciu, M.
    TRANSFORMATION GROUPS, 2023, 28 (04) : 1669 - 1686
  • [29] Group actions, non-Kahler complex manifolds and SKT structures
    Poddar, Mainak
    Thakur, Ajay Singh
    COMPLEX MANIFOLDS, 2018, 5 (01): : 9 - 25
  • [30] Supersymmetric configurations, geometric transitions and new non-Kahler manifolds
    Chen, Fang
    Dasgupta, Keshav
    Franche, Paul
    Katz, Sheldon
    Tatar, Radu
    NUCLEAR PHYSICS B, 2011, 852 (03) : 553 - 591