Exponentially fitted TDRK pairs for the Schrodinger equation

被引:2
|
作者
Yang, Yanping [1 ]
Wu, Ke [1 ]
Fang, Yonglei [1 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Peoples R China
关键词
Two-derivative Runge-Kutta method; Schrodinger equation; Error analysis; RUNGE-KUTTA METHOD; PREDICTOR-CORRECTOR METHODS; INITIAL-VALUE PROBLEMS; VANISHED PHASE-LAG; HIGH-ORDER METHOD; NUMERICAL-SOLUTION; MULTISTEP METHODS; SYMPLECTIC METHODS; 4-STEP METHODS; MULTIDERIVATIVE METHODS;
D O I
10.1007/s10910-015-0500-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two exponentially fitted two-derivative Runge-Kutta pairs for the numerical integration of the Schrodinger equation are presented in this paper. The asymptotic expressions of the local errors for large energies are given. The numerical results in the integration of the radial Schrodinger equation with the Woods-Saxon potential and the Lennard-Jones potential show the high efficiency of our new methods when compared with some famous optimized codes in the literature.
引用
收藏
页码:1470 / 1487
页数:18
相关论文
共 50 条