Local and Global Stability Analysis of Dengue Disease with Vaccination and Optimal Control

被引:8
|
作者
Chamnan, Anusit [1 ]
Pongsumpun, Puntani [1 ]
Tang, I-Ming [2 ]
Wongvanich, Napasool [3 ]
机构
[1] King Mongkut's Inst Technol Ladkrabang, Sch Sci, Dept Math, Bangkok 10520, Thailand
[2] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand
[3] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Dept Instrumentat & Control Engn, Bangkok 10520, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
dengue fever; global asymptotically stabilities; local asymptotically stabilities; optimal control; vaccination; AEDES-AEGYPTI; MODEL; TRANSMISSION; FEVER; INFECTION; WOLBACHIA; CULICIDAE; EFFICACY; DYNAMICS; COVID-19;
D O I
10.3390/sym13101917
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a disease that has spread all over the world, including Thailand. Dengue is caused by a virus and there are four distinct serotypes of the virus that cause dengue DENV-1, DENV-2, DENV-3, and DENV-4. The dengue viruses are transmitted by two species of the Aedes mosquitoes, the Aedes aegypti, and the Aedes albopictus. Currently, the dengue vaccine used in Thailand is chimeric yellow tetravalent dengue (CYD-TDV). This research presents optimal control which studies the vaccination only in individuals with a documented past dengue infection (seropositive), regardless of the serotypes of infection causing the initial infection by the disease. The analysis of dengue transmission model is used to establish the local asymptotically stabilities. The property of symmetry in the Lyapunov function an import role in achieving this global asymptotically stabilities. The optimal control systems are shown in numerical solutions and conclusions. The result shows that the control resulted in a significant reduction in the number of infected humans and infected vectors.</p>
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Stability analysis and optimal vaccination of an SIR epidemic model
    Zaman, Gul
    Kang, Yong Han
    Jung, Il Hyo
    BIOSYSTEMS, 2008, 93 (03) : 240 - 249
  • [42] Stability Analysis and Optimal Control Strategy for Prevention of Pine Wilt Disease
    Lee, Kwang Sung
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [43] Stability analysis and optimal control for leaf brown spot disease of rice
    Lertnaweephorn, Suprawee
    Humphries, Usa Wannasigha
    Khan, Amir
    AIMS MATHEMATICS, 2023, 8 (04): : 9602 - 9623
  • [44] Optimal Control and Stability Analysis of Malaria Disease: A Model Based Approach
    Mandal, Manotosh
    Jana, Soovoojeet
    Pahari, U. K.
    Kar, T. K.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2021, 10 (04) : 775 - 790
  • [45] Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control
    Khan, M. A.
    Ali, K.
    Bonyah, E.
    Okosun, K. O.
    Islam, S.
    Khan, A.
    SCIENTIFIC REPORTS, 2017, 7
  • [46] Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control
    M. A. Khan
    K. Ali
    E. Bonyah
    K. O. Okosun
    S. Islam
    A. Khan
    Scientific Reports, 7
  • [47] Comparison of global and local collocation methods for optimal control
    Huntington, Geoffrey T.
    Rao, Anil V.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2008, 31 (02) : 432 - 436
  • [48] Analysis of a host-vector dynamics of a dengue disease model with optimal vector control strategy
    Saha, Sangeeta
    Samanta, Guruprasad
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 195 : 31 - 55
  • [49] OPTIMAL CONTROL AND GLOBAL STABILITY OF THE SEIQRS EPIDEMIC MODEL
    Azoua, Mohammed
    Azouani, Abderrahim
    Hafidi, Imad
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [50] A LOCAL STABILITY CONDITION FOR OPTIMAL-CONTROL PROBLEMS
    SORGER, G
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 288 - 290