Local and Global Stability Analysis of Dengue Disease with Vaccination and Optimal Control

被引:8
|
作者
Chamnan, Anusit [1 ]
Pongsumpun, Puntani [1 ]
Tang, I-Ming [2 ]
Wongvanich, Napasool [3 ]
机构
[1] King Mongkut's Inst Technol Ladkrabang, Sch Sci, Dept Math, Bangkok 10520, Thailand
[2] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand
[3] King Mongkuts Inst Technol Ladkrabang, Sch Engn, Dept Instrumentat & Control Engn, Bangkok 10520, Thailand
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
dengue fever; global asymptotically stabilities; local asymptotically stabilities; optimal control; vaccination; AEDES-AEGYPTI; MODEL; TRANSMISSION; FEVER; INFECTION; WOLBACHIA; CULICIDAE; EFFICACY; DYNAMICS; COVID-19;
D O I
10.3390/sym13101917
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a disease that has spread all over the world, including Thailand. Dengue is caused by a virus and there are four distinct serotypes of the virus that cause dengue DENV-1, DENV-2, DENV-3, and DENV-4. The dengue viruses are transmitted by two species of the Aedes mosquitoes, the Aedes aegypti, and the Aedes albopictus. Currently, the dengue vaccine used in Thailand is chimeric yellow tetravalent dengue (CYD-TDV). This research presents optimal control which studies the vaccination only in individuals with a documented past dengue infection (seropositive), regardless of the serotypes of infection causing the initial infection by the disease. The analysis of dengue transmission model is used to establish the local asymptotically stabilities. The property of symmetry in the Lyapunov function an import role in achieving this global asymptotically stabilities. The optimal control systems are shown in numerical solutions and conclusions. The result shows that the control resulted in a significant reduction in the number of infected humans and infected vectors.</p>
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Global stability analysis and optimal control of measles model with vaccination and treatment
    Viriyapong, Ratchada
    Ridbamroong, Witchaya
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 207 - 237
  • [2] Global stability analysis and optimal control of measles model with vaccination and treatment
    Ratchada Viriyapong
    Witchaya Ridbamroong
    Journal of Applied Mathematics and Computing, 2020, 62 : 207 - 237
  • [3] Global stability and optimal vaccination control of SVIR models
    Zhu, Xinjie
    Liu, Hua
    Lin, Xiaofen
    Zhang, Qibin
    Wei, Yumei
    AIMS MATHEMATICS, 2024, 9 (02): : 3453 - 3482
  • [4] Optimal Control of Dengue Transmission with Vaccination
    Chamnan, Anusit
    Pongsumpun, Puntani
    Tang, I-Ming
    Wongvanich, Napasool
    MATHEMATICS, 2021, 9 (15)
  • [5] GLOBAL STABILITY AND OPTIMAL CONTROL FOR A TUBERCULOSIS MODEL WITH VACCINATION AND TREATMENT
    Yang, Yali
    Tang, Sanyi
    Ren, Xiaohong
    Zhao, Huiwen
    Guo, Chenping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03): : 1009 - 1022
  • [6] Global Stability and Optimal Control of Dengue with Two Coexisting Virus Serotypes
    Abidemi, Afeez
    Ahmad, Rohanin
    Aziz, Nur Arina Bazilah
    MATEMATIKA, 2019, 35 : 149 - 170
  • [7] STABILITY ANALYSIS AND OPTIMAL CONTROL OF A LYME DISEASE MODEL WITH INSECTICIDES SPRAYING AND VACCINATION
    Sun, Bei
    Okosun, Kazeem Oare
    Zhang, Xue
    JOURNAL OF BIOLOGICAL SYSTEMS, 2022, 30 (03) : 631 - 645
  • [8] Optimal Control of a Dengue Epidemic Model with Vaccination
    Rodrigues, Helena Sofia
    Monteiro, M. Teresa T.
    Torres, Delfim F. M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [9] Optimal vaccination and control strategies against dengue
    Fischer, Anne
    Chudej, Kurt
    Pesch, Hans Josef
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3496 - 3507
  • [10] Vaccination models and optimal control strategies to dengue
    Rodrigues, Helena Sofia
    Monteiro, M. Teresa T.
    Torres, Delfim F. M.
    MATHEMATICAL BIOSCIENCES, 2014, 247 : 1 - 12