Virtual telemetry for dynamic data-driven application simulations

被引:0
|
作者
Douglas, CC
Efendiev, Y
Ewing, R
Lazarov, R
Cole, MJ
Jones, G
Johnson, CR
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[3] Texas A&M Univ, College Stn, TX USA
[4] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe a virtual telemetry system that allows us to devise and augment dynamic data-driven application simulations (DDDAS). Virtual telemetry has the advantage that it is inexpensive to produce from real time simulations and readily transmittable using open source streaming software. Real telemetry is usually expensive to receive (if it is even available long term), tends to be messy, comes in no particular order, and can be incomplete or erroneous due to transmission problems or sensor malfunction. We will generate multiple streams continuously for extended periods (e.g., months or years): clean data, somewhat error prone data, and quite lossy or inaccurate data. By studying all of the streams at once we will be able to devise DDDAS components useful in predictive contaminant modeling.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 50 条
  • [31] Dynamic Process Intensification via Data-Driven Dynamic Optimization: Concept and Application to Ternary Distillation
    Yan, Lingqing
    Deneke, Tewodros L.
    Heljanko, Keijo
    Harjunkoski, Iiro
    Edgar, Thomas F.
    Baldea, Michael
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (28) : 10265 - 10275
  • [32] Invertible Koopman Network and its application in data-driven modeling for dynamic systems
    Jin, Yuhong
    Hou, Lei
    Zhong, Shun
    Yi, Haiming
    Chen, Yushu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [33] Dynamic Data-Driven Application System (DDDAS) for Video Surveillance User Support
    Blasch, Erik P.
    Aved, Alex J.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2503 - 2517
  • [34] Data-driven correction of coarse grid CFD simulations
    Kiener, A.
    Langer, S.
    Bekemeyer, P.
    COMPUTERS & FLUIDS, 2023, 264
  • [35] Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis
    Williams, Matthew O.
    Rowley, Clarence W.
    Mezic, Igor
    Kevrekidis, Ioannis G.
    EPL, 2015, 109 (04)
  • [36] Data-driven RANS for simulations of large wind farms
    Iungo, G. V.
    Viola, F.
    Ciri, U.
    Rotea, M. A.
    Leonardi, S.
    WAKE CONFERENCE 2015, 2015, 625
  • [37] Data-driven Fluid Simulations using Regression Forests
    Ladicky, L'ubor
    Jeong, SoHyeon
    Solenthaler, Barbara
    Pollefeys, Marc
    Gross, Markus
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [38] Data-driven analysis of oscillations in Hall thruster simulations
    Maddaloni, Davide
    Dominguez-Vazquez, Adrian
    Terragni, Filippo
    Merino, Mario
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (04):
  • [39] A data-driven multiscale model for reactive wetting simulations
    Ray, Jaideep
    Horner, Jeffrey S.
    Winter, Ian
    Kemmenoe, David J.
    Arata, Edward R.
    Chandross, Michael
    Roberts, Scott A.
    Grillet, Anne M.
    COMPUTERS & FLUIDS, 2024, 276
  • [40] Data-driven Radiative Magnetohydrodynamics Simulations with the MURaM Code
    Chen, Feng
    Cheung, Mark C. M.
    Rempel, Matthias
    Chintzoglou, Georgios
    ASTROPHYSICAL JOURNAL, 2023, 949 (02):