Characterization of Phenolic Plant Exudates by Nuclear Magnetic Resonance Spectroscopy

被引:2
|
作者
Lambert, Joseph B. [3 ]
Santiago-Blay, Jorge A. [1 ]
Wu, Yuyang [2 ]
Contreras, Tayde A. [3 ]
Johnson, Connor L. [3 ]
Bisulca, Christina M. [4 ]
机构
[1] Natl Museum Nat Hist, Dept Paleobiol, Washington, DC 20560 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60025 USA
[3] Trinity Univ, Dept Chem, San Antonio, TX 78212 USA
[4] Detroit Inst Arts, Detroit, MI 48202 USA
来源
JOURNAL OF NATURAL PRODUCTS | 2021年 / 84卷 / 09期
关键词
MOLECULAR CLASSIFICATION; RESINS;
D O I
10.1021/acs.jnatprod.1c00522
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The class of plant exudates that contain the phenol functionality, termed phenolics, is defined, surveyed, and characterized by solid-state C-13 NMR spectroscopy and by solution-state H-1 NMR spectroscopy. Materials in this group are identified by the phenolic C-13 resonance (from the ipso carbon of ArOH) at delta 145-160 (delta 160-167 for ArOR). The resonance patterns define several subclasses based on the collective similarity of their C-13 spectra, specifically, aloetics from the genus Aloe, guaiacs from the genus Guaiacum and other eurosid and conifer genera, xanthics from the genus Garcinia, and kinos from the genus Eucalyptus and many other genera. Phenolic exudates often are mixed with terpenoid materials (the building block of exudates known as resins) and carbohydrates (the building block of exudates known as gums) to form hybrid subgroups such as guaiac gums, guaiac resins, and kino resins. There are numerous phenolic exudates not affiliated with any of these groups, both as pure phenolics and as hybrids (phenolic resins, phenolic gum resins, and phenolic waxes).
引用
收藏
页码:2511 / 2524
页数:14
相关论文
共 50 条
  • [31] CHARACTERIZATION OF SULFOBETAINE MONOMERS BY NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY - A NOTE
    LASCHEWSKY, A
    TOUILLAUX, R
    HENDLINGER, P
    VIERENGEL, A
    POLYMER, 1995, 36 (15) : 3045 - 3049
  • [32] Structure characterization for polyoxyethylene alkyl amines by nuclear magnetic resonance spectroscopy
    Jin, K
    Sun, T
    Zhang, R
    Peng, QJ
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2003, 31 (06) : 659 - 663
  • [33] Botanical Characterization of Brazilian Honeys by Nuclear Magnetic Resonance Spectroscopy and Chemometrics
    Salgueiro, F. B.
    Lira, A. L.
    Rumjanek, V. M.
    Castro, R. N.
    REVISTA VIRTUAL DE QUIMICA, 2016, 8 (01) : 277 - 287
  • [34] Microcoil nuclear magnetic resonance spectroscopy
    Webb, AG
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2005, 38 (05) : 892 - 903
  • [35] Covariance nuclear magnetic resonance spectroscopy
    Brüschweiler, R
    Zhang, FL
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (11): : 5253 - 5260
  • [36] NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY OF BICYCLOBUTANE
    WUTHRICH, K
    MEIBOOM, S
    SNYDER, LC
    JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (01): : 230 - &
  • [37] Parallel nuclear magnetic resonance spectroscopy
    Kupce, Eriks
    Frydman, Lucio
    Webb, Andrew G.
    Yong, Jonathan R. J.
    Claridge, Tim D. W.
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [38] THE DIVERSITY OF NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
    Liu, Corey W.
    Alekseyev, Viktor Y.
    Allwardt, Jeffrey R.
    Bankovich, Alexander J.
    Cade-Menun, Barbara J.
    Davis, Ronald W.
    Du, Lin-Shu
    Garcia, K. Christopher
    Herschlag, Daniel
    Khosla, Chaitan
    Kraut, Daniel A.
    Li, Qing
    Null, Brian
    Puglisi, Joseph D.
    Sigala, Paul A.
    Stebbins, Jonathan F.
    Varani, Luca
    BIOPHYSICS AND THE CHALLENGES OF EMERGING THREATS, 2009, : 65 - +
  • [39] Shiftless nuclear magnetic resonance spectroscopy
    Wu, Chin H.
    Opella, Stanley J.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (05):
  • [40] APPLICATIONS OF NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
    PAGE, JE
    CHEMISTRY & INDUSTRY, 1965, (07) : 293 - &