Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

被引:0
|
作者
Denton, Emily [1 ]
Chintala, Soumith [2 ]
Szlam, Arthur [2 ]
Fergus, Rob [2 ]
机构
[1] NYU, Dept Comp Sci, Courant Inst, New York, NY 10003 USA
[2] Facebook AI Res, New York, NY USA
基金
加拿大自然科学与工程研究理事会;
关键词
FIELDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we introduce a generative parametric model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid, a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach [11]. Samples drawn from our model are of significantly higher quality than alternate approaches. In a quantitative assessment by human evaluators, our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for samples drawn from a GAN baseline model. We also show samples from models trained on the higher resolution images of the LSUN scene dataset.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] CubeGAN: Omnidirectional Image Synthesis Using Generative Adversarial Networks
    May, C.
    Aliaga, D.
    COMPUTER GRAPHICS FORUM, 2023, 42 (02) : 213 - 224
  • [42] Face Image Inpainting Using Cascaded Generative Adversarial Networks
    Chen J.-Z.
    Wang J.
    Gong X.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2019, 48 (06): : 910 - 917
  • [43] GAIT ENERGY IMAGE RESTORATION USING GENERATIVE ADVERSARIAL NETWORKS
    Babaee, Maryam
    Zhu, Yue
    Koepueklue, Okan
    Hoermann, Stefan
    Rigoll, Gerhard
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2596 - 2600
  • [44] Fingerprint image denoising and inpainting using generative adversarial networks
    Zhong, Wei
    Mao, Li
    Ning, Yang
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 599 - 607
  • [45] Multicenter PET image harmonization using generative adversarial networks
    Haberl, David
    Spielvogel, Clemens P.
    Jiang, Zewen
    Orlhac, Fanny
    Iommi, David
    Carrio, Ignasi
    Buvat, Irene
    Haug, Alexander R.
    Papp, Laszlo
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 (09) : 2532 - 2546
  • [46] Fingerprint image denoising and inpainting using generative adversarial networks
    Wei Zhong
    Li Mao
    Yang Ning
    Evolutionary Intelligence, 2024, 17 : 599 - 607
  • [47] Generative Image Modeling Using Style and Structure Adversarial Networks
    Wang, Xiaolong
    Gupta, Abhinav
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 318 - 335
  • [48] Image Generation Using Different Models Of Generative Adversarial Network
    Al-qerem, Ahmad
    Alsalman, Yasmeen Shaher
    Mansour, Khalid
    2019 INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2019, : 241 - 245
  • [49] Deep Generative Image Model using a Hybrid System of Generative Adversarial Nets (GANs)
    Yousef, Ahmed Mohammed
    Omar, Yasser M. K.
    Fakharany, Essam
    2017 INTL CONF ON ADVANCED CONTROL CIRCUITS SYSTEMS (ACCS) SYSTEMS & 2017 INTL CONF ON NEW PARADIGMS IN ELECTRONICS & INFORMATION TECHNOLOGY (PEIT), 2017, : 278 - 285
  • [50] Deep Pyramid Generative Adversarial Network With Local and Nonlocal Similarity Features for Natural Motion Image Deblurring
    Zhao, Bingxin
    Li, Weihong
    Gong, Weiguo
    IEEE ACCESS, 2019, 7 : 185893 - 185907