Magnitude-image based data-consistent deep learning method for MRI super resolution

被引:2
|
作者
Lin, Ziyan [1 ]
Chen, Zihao [2 ]
机构
[1] Shanghai Starriver Bilingual Sch, High Sch, Shanghai, Peoples R China
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
来源
2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2022年
关键词
MRI; Deep Learning; Super Resolution; Data Consistency; Magnitude Image;
D O I
10.1109/CBMS55023.2022.00060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic Resonance Imaging (MRI) is important in clinic to produce high resolution images for diagnosis, but its acquisition time is long for high resolution images. Deep learning based MRI super resolution methods can reduce scan time without complicated sequence programming, but may create additional artifacts due to the discrepancy between training data and testing data. Data consistency layer can improve the deep learning results but needs raw k-space data. In this work, we propose a magnitude-image based data consistency deep learning MRI super resolution method to improve super resolution images' quality without raw k-space data. Our experiments show that the proposed method can improve NRMSE and SSIM of super resolution images compared to the same Convolutional Neural Network (CNN) block without data consistency module.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [41] DeepSR: A deep learning tool for image super resolution
    Temiz, Hakan
    SOFTWAREX, 2023, 21
  • [42] Deep learning in medical image super resolution: a review
    Hujun Yang
    Zhongyang Wang
    Xinyao Liu
    Chuangang Li
    Junchang Xin
    Zhiqiong Wang
    Applied Intelligence, 2023, 53 : 20891 - 20916
  • [43] Advanced deep learning for image super-resolution
    Shamsolmoali, Pourya
    Sadka, Abdul Hamid
    Zhou, Huiyu
    Yang, Wankou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 82
  • [44] A Deep Learning Framework for Image Super-Resolution for Late Gadolinium Enhanced Cardiac MRI
    Upendra, Roshan Reddy
    Simon, Richard
    Linte, Cristian A.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [45] NeXtQSM-A complete deep learning pipeline for data-consistent Quantitative Susceptibility Mapping trained with hybrid data
    Cognolato, Francesco
    O'Brien, Kieran
    Jin, Jin
    Robinson, Simon
    Laun, Frederik B.
    Barth, Markus
    Bollmann, Steffen
    MEDICAL IMAGE ANALYSIS, 2023, 84
  • [46] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [47] Image super-resolution reconstruction based on sparse representation and deep learning
    Zhang, Jing
    Shao, Minhao
    Yu, Lulu
    Li, Yunsong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 87
  • [48] Endoscopic Image Deblurring and Super-Resolution Reconstruction Based on Deep Learning
    Yang, Xirui
    Chen, Yue
    Tao, Rui
    Zhang, Yue
    Liu, Zhiwen
    Shi, Yonggang
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 168 - 172
  • [49] Aerial image super-resolution restruction based on sparsity and deep learning
    Wang C.
    Li Y.
    Li X.
    Wang J.
    Wei W.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (08): : 2045 - 2050
  • [50] Image super-resolution reconstruction based on deep dictionary learning and A+
    Yi Huang
    Weixin Bian
    Biao Jie
    Zhiqiang Zhu
    Wenhu Li
    Signal, Image and Video Processing, 2024, 18 : 2629 - 2641