Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes

被引:20
|
作者
Begyn, Arnaud [1 ]
机构
[1] Lycee Pierre Fermat, F-31000 Toulouse, France
关键词
almost sure convergence; central limit theorem; fractional processes; Gaussian processes; generalized quadratic variations;
D O I
10.3150/07-BEJ5112
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cohen, Guyon, Perrin and Pontier have given assumptions under which the second-order quadratic variations of a Gaussian process converge almost surely to a deterministic limit. In this paper we present two new convergence results about these variations: the first is a deterministic asymptotic expansion; the second is a central limit theorem. Next we apply these results to identify two-parameter fractional Brownian motion and anisotropic fractional Brownian motion.
引用
收藏
页码:712 / 753
页数:42
相关论文
共 50 条
  • [21] Fractional Edgeworth expansion: Corrections to the Gaussian-Levy central-limit theorem
    Hazut, Netanel
    Medalion, Shlomi
    Kessler, David A.
    Barkai, Eli
    PHYSICAL REVIEW E, 2015, 91 (05)
  • [22] A FUNCTIONAL CENTRAL LIMIT-THEOREM FOR THE QUADRATIC VARIATION OF A CLASS OF GAUSSIAN RANDOM-FIELDS
    DEO, CM
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 247 - 251
  • [23] Asymptotic expansion in the limit theorem for the convergence to Laplace distribution
    ElFahham, MM
    ElSaid, HS
    MICROELECTRONICS AND RELIABILITY, 1997, 37 (02): : 349 - 353
  • [24] CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES
    HEYDE, CC
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (04): : 315 - 320
  • [25] Central limit theorem for linear processes
    Peligrad, M
    Utev, S
    ANNALS OF PROBABILITY, 1997, 25 (01): : 443 - 456
  • [26] Central limit theorem for Markov processes
    Landim, C
    FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 145 - 205
  • [27] CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES
    GORDIN, MI
    DOKLADY AKADEMII NAUK SSSR, 1969, 188 (04): : 739 - &
  • [28] On the Central Limit Theorem for Linear Processes
    Li Yongming
    Xiao Simin
    Xu Jian
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, PTS 1 AND 2, 2011, : 1354 - +
  • [30] On the Asymptotic Behavior in Random Fields: The Central Limit Theorem
    Mohammad Mehdi Saber
    Zohreh Shishebor
    Behnam Amiri
    Journal of Statistical Theory and Applications, 2019, 18 : 323 - 328