On a Generalisation of Finite T-Groups

被引:6
|
作者
Zhang, Chi [1 ]
Guo, Wenbin [2 ,3 ]
Liu, A-Ming [4 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[4] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
关键词
Finite groups; sigma-groups; Generalised T -groups; sigma-subnormal; The condition R-sigma i; SIGMA-PERMUTABLE SUBGROUPS;
D O I
10.1007/s40304-021-00240-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma = {sigma(i)vertical bar i is an element of I} be some partition of all primes P and G a finite group. A subgroup H of G is said to be sigma-subnormal in G if there exists a subgroup chain H = H-0 <= H-1 <= ... <= H-n = G such that either Hi-1 is normal in H-i or H-i /(Hi-1)(Hi) is a finite sigma(j)-group for some j is an element of I for i = 1, ... , n. We call a finite group G a T-sigma-group if every s-subnormal subgroup is normal in G. In this paper, we analyse the structure of the T-sigma-groups and give some characterisations of the T-sigma-groups.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [21] EXECUTIVE T-GROUPS
    RUBIN, AL
    PSYCHOLOGY TODAY, 1979, 13 (02) : 7 - 7
  • [22] Varieties of t-groups
    Macedonska, O
    Storozhev, A
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (05) : 1589 - 1593
  • [23] Determination of Certain t-Groups
    Mishra, Laxmi Kant
    Sharma, B. K.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (04): : 359 - 364
  • [24] Characterizations of some classes of finite s -soluble Ps T-groups
    Li, Haiyan
    Liu, A. -Ming
    Safonova, Inna N.
    Skiba, Alexander N.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) : 128 - 139
  • [25] The normalizer property for integral group rings of finite solvable T-groups
    Li, Zhengxing
    Hai, Jinke
    JOURNAL OF GROUP THEORY, 2012, 15 (02) : 237 - 243
  • [26] EFFECTS OF TRAINERS ON THEIR T-GROUPS
    BOLMAN, L
    JOURNAL OF APPLIED BEHAVIORAL SCIENCE, 1971, 7 (03): : 309 - &
  • [27] T-GROUPS, TESTS, AND TENSION
    JOHNSON, DW
    KAVANAGH, JA
    LUBIN, B
    SMALL GROUP BEHAVIOR, 1973, 4 (01): : 81 - 88
  • [28] Determination of Certain t-Groups
    Laxmi Kant Mishra
    B. K. Sharma
    National Academy Science Letters, 2019, 42 : 359 - 364
  • [29] THE FRATTINI ARGUMENT AND T-GROUPS
    BREWSTER, B
    SEHGAL, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (02) : 239 - 245
  • [30] On T-groups, supersolvable groups, and maximal subgroups
    Gil Kaplan
    Archiv der Mathematik, 2011, 96 : 19 - 25