Determinants of postsynaptic Ca2+ signaling in Purkinje neurons

被引:73
|
作者
Hartmann, J [1 ]
Konnerth, A [1 ]
机构
[1] Univ Munich, Inst Physiol, D-80336 Munich, Germany
关键词
postsynaptic Ca2+; Purkinje neurons; glutamate receptors; Ca2+ channels; Ca2+ buffers;
D O I
10.1016/j.ceca.2005.01.014
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Neuronal integration in Purkinje neurons involves many forms of Ca2+ signaling. Two afferent synaptic inputs, the parallel and the climbing fibers, provide a major drive for these signals. These two excitatory synaptic inputs are both glutamatergic. Postsynaptically they activate alpha-amino-3-hydroxy-5-methyl-4-propionic acid (AMPA) receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Unlike most other types of central neurons, Purkinje neurons do not express NMDA (N-methyl-D-aspartate) receptors (NMDARs). AMPARs in Purkinje neurons are characterized by a low permeability for Ca2+ ions. AMPAR-mediated synaptic depolarization may activate voltage-gated Ca2+ channels, mostly of the P/Q-type. The resulting intracellular Ca2+ signals are shaped by the Ca2+ buffers calbindin and parvalbumin. Ca2+ clearance from the cytosol is brought about by Ca2+-ATPases in the plasma membrane and the endoplasmic reticulum, as well as the Na+-Ca2+-exchanger. Binding of glutamate to mGluRs induces postsynaptic Ca2+-transients through two G protein-dependent pathways: involving (1) the release of Ca2+ ions from intracellular Ca2+ stores and (2) the opening of the cation channel TRPC1. Homer proteins appear to play an important role in postsynaptic Ca2+ signaling by providing a direct link between the plasma membrane-resident elements (mGluRs and TRPC1) and their intracellular partners, including the IP(3)Rs. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:459 / 466
页数:8
相关论文
共 50 条
  • [41] Regulation of postsynaptic Ca2+ influx in hippocampal CA1 pyramidal neurons via extracellular carbonic anhydrase
    Fedirko, Nataliya
    Avshalumov, Marat
    Rice, Margaret E.
    Chesler, Mitchell
    [J]. JOURNAL OF NEUROSCIENCE, 2007, 27 (05): : 1167 - 1175
  • [42] Ca2+ signaling and intracellular Ca2+ binding proteins
    Niki, I
    Yokokura, H
    Sudo, T
    Kato, M
    Hidaka, H
    [J]. JOURNAL OF BIOCHEMISTRY, 1996, 120 (04): : 685 - 698
  • [43] L-type Ca2+ channels contribute to current-evoked spike firing and associated Ca2+ signals in cerebellar Purkinje neurons
    Gruol, D. L.
    Netzeband, J. G.
    Schneeloch, J.
    Gullette, C. E.
    [J]. CEREBELLUM, 2006, 5 (02): : 146 - 154
  • [44] L-type Ca2+ channels contribute to current-evoked spike firing and associated Ca2+ signals in cerebellar Purkinje neurons
    D. L. Gruol
    J. G. Netzeband
    J. Schneeloch
    C. E. Gullette
    [J]. The Cerebellum, 2006, 5 : 146 - 154
  • [45] Ca2+ transients and Ca2+ waves in Purkinje cells -: Role in action potential initiation
    Boyden, PA
    Pu, JL
    Pinto, J
    ter Keurs, HEDJ
    [J]. CIRCULATION RESEARCH, 2000, 86 (04) : 448 - 455
  • [46] Evoked Centripetal Ca2+ Activation in Cardiac Purkinje Cells: CICR or Ca2+ Diffusion?
    Haq, Kazi T.
    Daniels, Rebecca
    Bungay, Sharene
    Stuyvers, Bruno D.
    [J]. BIOPHYSICAL JOURNAL, 2011, 100 (03) : 554 - 554
  • [47] Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements
    Gaffield, Michael A.
    Rowan, Matthew J. M.
    Amat, Samantha B.
    Hirai, Hirokazu
    Christie, Jason M.
    [J]. ELIFE, 2018, 7
  • [48] The chemokine CCL2 modulates Ca2+ dynamics and electrophysiological properties of cultured cerebellar Purkinje neurons
    van Gassen, KLI
    Netzeband, JG
    de Graan, PNE
    Gruol, DL
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2005, 21 (11) : 2949 - 2957
  • [49] Purinergic Ca2+ signaling in myenteric neurons via P-2 purinoceptors
    Christofi, FL
    Guan, Z
    Wood, JD
    Baidan, LV
    Stokes, BT
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1997, 272 (03): : G463 - G473
  • [50] Ca2+ Signaling and Regeneration
    Marchant, Jonathan S.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2019, 11 (11):