Constant Approximating k-Clique Is W[1]-Hard

被引:7
|
作者
Lin, Bingkai [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
基金
国家重点研发计划;
关键词
FPT-Inapproximability; k-Clique; W[1]-hard; k-Vector-Sum; PARAMETERIZED COMPLEXITY; HARDNESS; PROOFS;
D O I
10.1145/3406325.3451016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For every graph G, let omega(G) be the largest size of complete subgraph in G. This paper presents a simple algorithm which, on input a graph G, a positive integer k and a small constant epsilon > 0, outputs a graph G' and an integer k' in 2(Theta(k5)) . vertical bar G vertical bar(O(1))-time such that (1) k' <= 2(Theta)((k5)), (2) if omega(G) >= k, then omega(G') >= k', (3) if omega(G) < k, then omega(G') < (1-epsilon)k'. This implies that no f (k) . vertical bar G vertical bar(O(1))-time algorithm can distinguish between the cases omega(G) >= k and omega(G) < k/c for any constant c >= 1 and computable function f, unless FPT = W [1].
引用
收藏
页码:1749 / 1756
页数:8
相关论文
共 50 条
  • [11] Recognizing k-Clique Extendible Orderings
    Francis, Mathew
    Neogi, Rian
    Raman, Venkatesh
    ALGORITHMICA, 2021, 83 (11) : 3338 - 3362
  • [12] Approximation algorithms for the k-clique covering problem
    Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712-1063
    SIAM J Discrete Math, 3 (492-509):
  • [13] Approximation algorithms for the k-clique covering problem
    Goldschmidt, O
    Hochbaum, DS
    Hurkens, C
    Yu, G
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (03) : 492 - 509
  • [14] THE MONOTONE COMPLEXITY OF k-CLIQUE ON RANDOM GRAPHS
    Rossman, Benjamin
    SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 256 - 279
  • [15] The Monotone Complexity of k-Clique on Random Graphs
    Rossman, Benjamin
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 193 - 201
  • [16] An Algorithm to Discover the k-Clique Cover in Networks
    Cavique, Luis
    Mendes, Armando B.
    Santos, Jorge M. A.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5816 : 363 - +
  • [17] Lightning Fast and Space Efficient k-clique Counting
    Ye, Xiaowei
    Li, Rong-Hua
    Dai, Qiangqiang
    Chen, Hongzhi
    Wang, Guoren
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1191 - 1202
  • [18] Overlapping Modularity at the Critical Point of k-Clique Percolation
    Toth, Balint
    Vicsek, Tamas
    Palla, Gergely
    JOURNAL OF STATISTICAL PHYSICS, 2013, 151 (3-4) : 689 - 706
  • [19] Vemaque: Approximately Verifiable Remote Computation of k-Clique and Maximum Clique Problems
    Samarawickrama, R. G. L. M.
    Ranasinghe, D. N.
    Sritharan, T.
    2016 SIXTEENTH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER) - 2016, 2016, : 124 - 131
  • [20] Incremental K-clique clustering in dynamic social networks
    Duan, Dongsheng
    Li, Yuhua
    Li, Ruixuan
    Lu, Zhengding
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 129 - 147