Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking

被引:113
|
作者
Hejazi, D. [1 ]
Haq, A. J. [1 ]
Yazdipour, N. [1 ]
Dunne, D. P. [1 ]
Calka, A. [1 ]
Barbaro, F. [2 ]
Pereloma, E. V. [1 ]
机构
[1] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia
[2] BlueScope Steel Ltd, Port Kembla, NSW 2505, Australia
基金
澳大利亚研究理事会;
关键词
Pipeline steel; Microstructure; Hydrogen charging; Fracture toughness; Fractography; Inclusions; THERMOMECHANICAL CONTROL PROCESS; STRESS-CORROSION CRACKING; TIC PARTICLES; FRACTURE; DIFFUSION; INCLUSIONS; RESISTANCE; EMBRITTLEMENT; CHARACTER; TOUGHNESS;
D O I
10.1016/j.msea.2012.04.076
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influence of composition and microstructure on susceptibility to hydrogen induced cracking (HIC) was investigated in high strength pipeline steels, with Mn contents of 1.2% (standard, X70), and 0.5% (medium, MX70). The HIC resistance of the simulated coarse grained heat affected zone microstructures and normalized X70 transfer bar was also investigated. Notched and fatigue pre-cracked samples were charged with hydrogen prior to three point bend tests. The conditional fracture toughness J(Q) was determined. The results are discussed in relation to grain size, microstructure, composition and the type and distribution of non-metallic inclusions and precipitates. (C) 2012 Elsevier BM. All rights reserved.
引用
收藏
页码:40 / 49
页数:10
相关论文
共 50 条
  • [1] Role of Microstructure in Susceptibility of X70 Pipeline Steel to Hydrogen Embrittlementac
    Hejazi, D.
    Haq, A. J.
    Yazdipour, N.
    Dunne, D. P.
    Barbaro, F. J.
    Pereloma, E. V.
    [J]. PRICM 7, PTS 1-3, 2010, 654-656 : 162 - +
  • [2] Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel
    Mohtadi-Bonab, M. A.
    Szpunar, J. A.
    Razavi-Tousi, S. S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (31) : 13831 - 13841
  • [3] Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel
    M. A. Mohtadi-Bonab
    M. Eskandari
    R. Karimdadashi
    J. A. Szpunar
    [J]. Metals and Materials International, 2017, 23 : 726 - 735
  • [4] Effect of Different Microstructural Parameters on Hydrogen Induced Cracking in an API X70 Pipeline Steel
    Mohtadi-Bonab, M. A.
    Eskandari, M.
    Karimdadashi, R.
    Szpunar, J. A.
    [J]. METALS AND MATERIALS INTERNATIONAL, 2017, 23 (04) : 726 - 735
  • [5] Influence of Thermomechanically Controlled Processing on Microstructure and Hydrogen Induced Cracking Susceptibility of API 5L X70 Pipeline Steel
    Enyinnaya Ohaeri
    Joseph Omale
    Ahmed Tiamiyu
    K. M. Mostafijur Rahman
    Jerzy Szpunar
    [J]. Journal of Materials Engineering and Performance, 2018, 27 : 4533 - 4547
  • [6] The effect of hydrogen content and welding conditions on the hydrogen induced cracking of the API X70 steel weld
    Hanzaei, Ali Talebi
    Marashi, Seyed Pirooz Houeida
    Ranjbarnodeh, Eslam
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (19) : 9399 - 9407
  • [7] The effect of microstructure on properties of high deformation pipeline steel X70
    Wan, X. L.
    Wu, K. M.
    Xia, Z. H.
    [J]. MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4, 2013, 690-693 : 182 - +
  • [8] Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels
    Haq, Ayesha J.
    Muzaka, K.
    Dunne, D. P.
    Calka, A.
    Pereloma, E. V.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) : 2544 - 2556
  • [9] Cracking Failure Analysis of X70 Pipeline Steel Weld
    Wang, Bin
    Zhang, Senfeng
    Zhou, Cui
    Liu, Nan
    Wang, Liang
    Tian, Xiaoyu
    [J]. ADVANCES IN ENERGY AND ENVIRONMENTAL MATERIALS, 2018, : 371 - 386
  • [10] Effect of tensile stress on the hydrogen adsorption of X70 pipeline steel
    Xu, Zhengyi
    Zhang, Pengyuan
    Zhang, Bo
    Lei, Bing
    Feng, Zhiyuan
    Shao, Yawei
    Wang, Yanqiu
    Meng, Guozhe
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (50) : 21582 - 21595