The spectrum of the p-Laplacian with singular weight

被引:4
|
作者
Montenegro, Marcelo [1 ]
Lorca, Sebastian [2 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Tarapaca, Inst Alta Invest, Arica, Chile
基金
巴西圣保罗研究基金会;
关键词
Nonlinear eigenvalue problem; p-Laplacian; Singular weight; Indefinite weight; QUASILINEAR ELLIPTIC-EQUATIONS; 1ST EIGENVALUE; INDEFINITE WEIGHT; INEQUALITIES; SIMPLICITY;
D O I
10.1016/j.na.2012.01.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the Hardy-Sobolev inequality to characterize the first eigenvalue lambda(1) of the p-Laplacian witsh singular weight. In some cases it is shown that lambda(1) is positive simple, isolated and has a nonnegative corresponding eigenfunction phi(1). Higher eigenvalues, in particular the second one, are also determined. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3746 / 3753
页数:8
相关论文
共 50 条
  • [1] Unilateral global bifurcation for p-Laplacian with singular weight
    Xin Liao
    Guowei Dai
    [J]. Journal of Inequalities and Applications, 2013 (1)
  • [2] ON SINGULAR p-LAPLACIAN PROBLEMS
    Perera, Kanishka
    Silva, Elves A. B.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (01) : 105 - 120
  • [3] Initial value problems of p-Laplacian with a strong singular indefinite weight
    Li, Hong-Xu
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (3-4): : 415 - 425
  • [4] On a Singular Logistic Equation with the p-Laplacian
    Hai, Dang Dinh
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (03): : 339 - 348
  • [5] The spectrum of the periodic p-Laplacian
    Binding, Paul A.
    Rynne, Bryan P.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) : 199 - 218
  • [6] On the Fucik spectrum of the p-Laplacian
    Cuesta, M
    De Figueiredo, DG
    Gossez, JP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (06): : 681 - 684
  • [7] On the Fucik spectrum of the p-laplacian
    Perera, K
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 259 - 270
  • [8] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [9] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [10] TWO POSITIVE SOLUTIONS FOR ONE-DIMENSIONAL p-LAPLACIAN WITH A SINGULAR WEIGHT
    Kajikiya, Ryuji
    Lee, Yong-Hoon
    Sim, Inbo
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (02) : 427 - 448