Nitrogen and sulfur Co-Doped graphene quantum dots decorated CeO2 nanoparticles/polyaniline: As high efficient hybrid supercapacitor electrode materials

被引:47
|
作者
Oskueyan, Ghasem [1 ,2 ]
Lakouraj, Moslem Mansour [1 ]
Mahyari, Mojtaba [2 ]
机构
[1] Univ Mazandaran, Dept Organ Chem, Fac Chem, Polymer Chem Lab, POB 47416-95447, Babol Sar, Iran
[2] Malek Ashtar Univ Technol, Dept Chem & Chem Engn, POB 16765-3454, Tehran, Iran
基金
美国国家科学基金会;
关键词
N and S co-doped graphene quantum dots; CeO2; nanoparticle; Polyaniline; Hybrid supercapacitor; HIGH-PERFORMANCE; FACILE SYNTHESIS; OXIDE; NANOCOMPOSITE; COMPOSITE; POLYMERIZATION; NANOTUBES; OXIDATION; NANORODS; SENSOR;
D O I
10.1016/j.electacta.2018.12.179
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Recently, hybrid supercapacitor due to high energy/power density and long cycle life has been attractive field for energy researchers. In this work, we demonstrated the decoration of graphene quantum dots on metal oxide/polyaniline to form efficient electrode materials for a hybrid supercapacitor for the first time. Ultrafine N and S co-doped graphene quantum dots (N,S-GQDs) were grown on CeO2 nanoparticles via in situ hydrothermal method. Then, PANI-N,S-GQDs@CeO2 nanocomposites have been prepared by the chemical oxidation polymerization process. The simultaneous incorporation of S and N species in GQDs provides a larger active surface and greatly increases the contact area with the CeO2 in polymer nanocomposite. The as prepared material was analyzed by spectroscopic techniques and electron microscopy analysis. Electrochemical properties of the PANI-N,S-GQDs@CeO2 as supercapacitor electrodes were investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy experiments. The maximum specific capacity of 189 C g(-1) was obtained for PANI/5 wt % N,SGQDs@CeO2 nanocomposite at current density of 1 A g(-1) in comparison with 175 and 115 C g(-1) for PANI/10 wt% N,S-GQDs@CeO2 and PANI/5 wt% CeO2 respectively. Value of specific capacity remained at 75% after 1000 cycles under the current density of 1 A g(-1). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [21] Nitrogen and Sulfur Co-Doped Graphene Quantum Dots Anchored TiO2 Nanocomposites for Enhanced Photocatalytic Activity
    Rawal, Jishu
    Kamran, Urooj
    Park, Mira
    Pant, Bishweshwar
    Park, Soo-Jin
    CATALYSTS, 2022, 12 (05)
  • [22] Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots
    Luo, Cheng
    Xie, He
    Hou, Chengyi
    Zhang, Qinghong
    Li, Yaogang
    Wang, Hongzhi
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (04) : 3242 - 3251
  • [23] Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots
    Cheng Luo
    He Xie
    Chengyi Hou
    Qinghong Zhang
    Yaogang Li
    Hongzhi Wang
    Journal of Materials Science, 2019, 54 : 3242 - 3251
  • [24] CeO2/Ce2O3 quantum dot decorated reduced graphene oxide nanohybrid as electrode for supercapacitor
    Chakrabarty, N.
    Dey, A.
    Krishnamurthy, S.
    Chakraborty, Amit K.
    APPLIED SURFACE SCIENCE, 2021, 536
  • [25] Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution
    Wang, Liping
    Wu, Xiuqin
    Guo, Sijie
    Han, Mumei
    Zhou, Yunjie
    Sun, Yue
    Huang, Hui
    Liu, Yang
    Kang, Zhenhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) : 2717 - 2723
  • [26] The synthesis of nitrogen and sulfur co-doped graphene quantum dots for fluorescence detection of cobalt(ii) ions in water
    Boonta, Wissuta
    Talodthaisong, Chanon
    Sattayaporn, Suchinda
    Chaicham, Chiraporn
    Chaicham, Anusak
    Sahasithiwat, Somboon
    Kangkaew, Laongdao
    Kulchat, Sirinan
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (02) : 507 - 516
  • [27] Facile and rapid method to synthesis sulfur and nitrogen co-doped graphene quantum dots as an electrode material with excellent specific capacitance for supercapacitors application
    Muhiuddin, Mohammad
    Devi, Naorem Aruna
    Bharadishettar, Naveen
    Meti, Sunil
    Siddique, Abu Bakar
    Satyanarayan, M. N.
    Udaya, Bhat. K.
    Akhtar, Waseem
    Rahman, Mohammad Rizwanur
    DIAMOND AND RELATED MATERIALS, 2024, 146
  • [28] Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction
    Wu, Dongling
    Wang, Tao
    Wang, Luxiang
    Jia, Dianzeng
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 290
  • [29] Nitrogen and Sulfur Co-Doped Graphene-Like Carbon from Industrial Dye Wastewater for Use as a High-Performance Supercapacitor Electrode
    Lin, Yannan
    Chen, Hui
    Shi, Yulin
    Wang, Gang
    Chen, Long
    Wang, Fu
    Li, Shiqi
    Yu, Feng
    Zhang, Lili
    GLOBAL CHALLENGES, 2019, 3 (11)
  • [30] Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks
    Martins, Eduardo Constante
    Santana, Edson Roberto
    Spinelli, Almir
    TALANTA, 2023, 252