Protecting Data Privacy in Federated Learning Combining Differential Privacy and Weak Encryption

被引:2
|
作者
Wang, Chuanyin [1 ,2 ]
Ma, Cunqing [1 ]
Li, Min [1 ,2 ]
Gao, Neng [1 ]
Zhang, Yifei [1 ]
Shen, Zhuoxiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
来源
关键词
Federated learning; Privacy; Differential privacy; Weak encryption;
D O I
10.1007/978-3-030-89137-4_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a typical application of decentralization, federated learning prevents privacy leakage of crowdsourcing data for various training tasks. Instead of transmitting actual data, federated learning only updates model parameters of server by learning multiple sub-models from clients. However, these parameters may be leaked during transmission and further used by attackers to restore client data. Existing technologies used to protect parameters from privacy leakage do not achieve the sufficient protection of parameter information. In this paper, we propose a novel and efficient privacy protection method, which perturbs the privacy information contained in the parameters and completes its ciphertext representation in transmission. Regarding to the perturbation part, differential privacy is utilized to perturb the real parameters, which can minimize the privacy information contained in the parameters. To further camouflage the parameters, the weak encryption keeps the cipher-text form of the parameters as they are transmitted from the client to the server. As a result, neither the server nor any middle attacker can obtain the real information of the parameter directly. The experiments show that our method effectively resists attacks from both malicious clients and malicious server.
引用
下载
收藏
页码:95 / 109
页数:15
相关论文
共 50 条
  • [31] Preserving User Privacy for Machine Learning: Local Differential Privacy or Federated Machine Learning?
    Zheng, Huadi
    Hu, Haibo
    Han, Ziyang
    IEEE INTELLIGENT SYSTEMS, 2020, 35 (04) : 5 - 14
  • [32] Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption
    Qiu, Fengyuan
    Yang, Hao
    Zhou, Lu
    Ma, Chuan
    Fang, LiMing
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 427 - 440
  • [33] Privacy Preservation using Federated Learning and Homomorphic Encryption: A Study
    Ajay, D. M.
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 451 - 458
  • [34] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [35] Privacy Enhanced Federated Learning Utilizing Differential Privacy and Interplanetary File System
    Kim, Hyowon
    Doh, Inshil
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 312 - 317
  • [36] PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data
    Wang, Bo
    Li, Hongtao
    Guo, Yina
    Wang, Jie
    APPLIED SOFT COMPUTING, 2023, 146
  • [37] Differential Privacy: Exploring Federated Learning Privacy Issue to Improve Mobility Quality
    Gomes, Gabriel L.
    da Cunha, Felipe D.
    Villas, Leandro A.
    2023 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS, LATINCOM, 2023,
  • [38] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [39] Combining Fragmentation and Encryption to Protect Privacy in Data Storage
    Ciriani, Valentina
    Di Vimercati, Sabrina De Capitani
    Foresti, Sara
    Jajodia, Sushil
    Paraboschi, Stefano
    Samarati, Pierangela
    ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY, 2010, 13 (03)
  • [40] Federated Learning and Privacy
    Bonawitz, Kallista
    Kairouz, Peter
    Mcmahan, Brendan
    Ramage, Daniel
    COMMUNICATIONS OF THE ACM, 2022, 65 (04) : 90 - 97