Cascade of phase transitions in a planar Dirac material

被引:1
|
作者
Kanazawa, Takuya [1 ]
Kieburg, Mario [2 ]
Verbaarschot, Jacobus J. M. [3 ]
机构
[1] Hitachi Ltd, Res & Dev Grp, Kokubunji, Tokyo 1858601, Japan
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
关键词
Field Theories in Lower Dimensions; Phase Diagram of QCD; 1; N Expansion; Nonperturbative Effects; RANDOM-MATRIX THEORY; DISORDERED DEGENERATE SEMICONDUCTORS; LOW-TEMPERATURE BEHAVIOR; SYMMETRY-BREAKING; CORRELATION LENGTH; DYNAMICAL MODEL; CHIRAL-SYMMETRY; MASS GENERATION; NJL-MODEL; FIELD;
D O I
10.1007/JHEP06(2021)015
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate a model of interacting Dirac fermions in 2 + 1 dimensions with M flavors and N colors having the U(M)xSU(N ) symmetry. In the large-N limit, we find that the U(M) symmetry is spontaneously broken in a variety of ways. In the vacuum, when the parity-breaking flavor-singlet mass is varied, the ground state undergoes a sequence of M first-order phase transitions, experiencing M + 1 phases characterized by symmetry breaking U(M)-> U(M - k)xU(k) with k is an element of {0, 1, 2, ... , M}, bearing a close resemblance to the vacuum structure of three-dimensional QCD. At finite temperature and chemical potential, a rich phase diagram with first and second-order phase transitions and tricritical points is observed. Also exotic phases with spontaneous symmetry breaking of the form as U(3)-> U(1)(3), U(4)-> U(2)xU(1)(2), and U(5)-> U(2)(2)xU(1) exist. For a large flavor-singlet mass, the increase of the chemical potential mu brings about M consecutive first-order transitions that separate the low-mu phase diagram with vanishing fermion density from the high-mu region with a high fermion density.
引用
收藏
页数:44
相关论文
共 50 条
  • [21] Chirality quantum phase transition of a noncommutative planar Dirac oscillator
    Hou, Yu-Long
    Wang, Qing
    Yuan, Zi-Gang
    Long, Zheng-Wen
    Jing, Jian
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [22] Material forces and phase transitions in elasticity
    V. K. Kalpakides
    K. G. Balassas
    C. V. Massalas
    Archive of Applied Mechanics, 2007, 77 : 135 - 146
  • [23] Material forces and phase transitions in elasticity
    Kalpakides, V. K.
    Balassas, K. G.
    Massalas, C. V.
    ARCHIVE OF APPLIED MECHANICS, 2007, 77 (2-3) : 135 - 146
  • [24] Quantum phase transitions of the Dirac oscillator in a minimal length scenario
    Menculini, L.
    Panella, O.
    Roy, P.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [25] Tunable interactions and phase transitions in Dirac materials in a magnetic field
    Papic, Z.
    Abanin, D. A.
    Barlas, Y.
    Bhatt, R. N.
    PHYSICAL REVIEW B, 2011, 84 (24)
  • [26] Comment on "Topological Phase Transitions of Dirac Magnons in Honeycomb Ferromagnets"
    Li, Yun-Mei
    Wei, Bin
    Chang, Kai
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [27] Cascade of phase transitions in the vicinity of a quantum critical point
    Meier, H.
    Pepin, C.
    Einenkel, M.
    Efetov, K. B.
    PHYSICAL REVIEW B, 2014, 89 (19)
  • [28] Planar Dirac diffusion
    De Leo, Stefano
    Rotelli, Pietro
    EUROPEAN PHYSICAL JOURNAL C, 2009, 63 (01): : 157 - 162
  • [29] Planar Dirac diffusion
    Stefano De Leo
    Pietro Rotelli
    The European Physical Journal C, 2009, 63 : 157 - 162
  • [30] Superconducting phase transition in planar fermionic models with Dirac cone tilting
    Gomes, Y. M. P.
    Ramos, Rudnei O.
    PHYSICAL REVIEW B, 2023, 107 (12)