The Fermi-Pasta-Ulam problem in the thermodynamic limit - Scaling laws of the energy cascade

被引:0
|
作者
Ponno, A [1 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
关键词
oscillator chain; mode-coupling; energy cascade;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present contribution we justify and discuss the scaling laws characterizing the first phase of the energy transfer from large to small spatial scales in a chain of nonlinear oscillators (the so-called Fermi-Pasta-Ulam a-model). By means of qualitative estimates, we show that large scale initial excitations (long wavelength Fourier modes) produce injection of energy into smaller scales on times t > -tau(c) (similar to)epsilon(-3/4) and up to a cutoff spatial scale l(c) similar to epsilon(-1/4), where epsilon is the energy per degree of freedom of the system.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [31] Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices
    Ming, Yi
    Ye, Liu
    Chen, Han-Shuang
    Mao, Shi-Feng
    Li, Hui-Min
    Ding, Ze-Jun
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [32] Energy Carriers in the Fermi-Pasta-Ulam β Lattice: Solitons or Phonons?
    Li, Nianbei
    Li, Baowen
    Flach, Sergej
    PHYSICAL REVIEW LETTERS, 2010, 105 (05)
  • [33] Complex Fermi-Pasta-Ulam recurrence and the problem of information storage in a neuron
    Berezin, AA
    Garber, M
    Shcheglov, VA
    JOURNAL OF RUSSIAN LASER RESEARCH, 1998, 19 (02) : 194 - 209
  • [34] Propagation dynamics on the Fermi-Pasta-Ulam lattices
    Yuan, Zong-Qiang
    Zheng, Zhi-Gang
    FRONTIERS OF PHYSICS, 2013, 8 (03) : 349 - 355
  • [35] The Fermi-Pasta-Ulam System as a Model for Glasses
    Carati, A.
    Maiocchi, A.
    Galgani, L.
    Amati, G.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2015, 18 (01) : 1 - 12
  • [36] MODULATIONAL INSTABILITY AND THE FERMI-PASTA-ULAM RECURRENCE
    JANSSEN, PAEM
    PHYSICS OF FLUIDS, 1981, 24 (01) : 23 - 26
  • [37] Discrete breathers in Fermi-Pasta-Ulam lattices
    Flach, S
    Gorbach, A
    CHAOS, 2005, 15 (01)
  • [38] FORCED FERMI-PASTA-ULAM LATTICE MAPS
    Diblik, J.
    Feckan, M.
    Pospisil, M.
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 63 - 78
  • [39] New Irregular Solutions in the Spatially Distributed Fermi-Pasta-Ulam Problem
    Kashchenko, Sergey
    Tolbey, Anna
    MATHEMATICS, 2021, 9 (22)
  • [40] Heat Conduction in the α-β Fermi-Pasta-Ulam Chain
    Das, Suman G.
    Dhar, Abhishek
    Narayan, Onuttom
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) : 204 - 213