Approximate spatio-temporal retrieval

被引:9
|
作者
Papadias, D
Mamoulis, N
Delis, V
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[2] CWI, NL-1090 GB Amsterdam, Netherlands
[3] Univ Patras, Comp Engn & Informat Dept, GR-26110 Patras, Greece
[4] Univ Patras, Inst Comp Technol, GR-26110 Patras, Greece
关键词
D O I
10.1145/366836.366874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a framework for the handling of spatio-temporal queries with inexact matches, using the concept of relation similarity. We initially describe a binary string encoding for 1D relations that permits the automatic derivation of similarity measures. We then extend this model to various granularity levels and many dimensions, and show that reasoning on spatio-temporal structure is significantly facilitated in the new framework. Finally, we provide algorithms and optimization methods for four types of queries: (i) object retrieval based on some spatio-temporal relations with respect to a reference object, (ii) spatial joins, i.e., retrieval of object pairs that satisfy some input relation, (iii) structural queries, which retrieve configurations matching a particular spatio-temporal structure, and (iv) special cases of motion queries. Considering the current large availability of multidimensional data and the increasing need for flexible query-answering mechanisms, our techniques can be used as the core of spatio-temporal query processors.
引用
收藏
页码:53 / 96
页数:44
相关论文
共 50 条
  • [21] Spatio-Temporal feature based VLAD for efficient Video retrieval
    Reddy, Mopuri K.
    Arora, Sahil
    Babu, R. Venkatesh
    [J]. 2013 FOURTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2013,
  • [22] Spatio-temporal pseudo relevance feedback for scientific data retrieval
    Takeuchi, Shin'ichi
    Sugiura, Komei
    Akahoshi, Yuhei
    Zettsu, Koji
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2017, 12 (01) : 124 - 131
  • [23] Spatio-temporal traffic video data archiving and retrieval system
    Yue, Hang
    Rilett, Laurence R.
    Revesz, Peter Z.
    [J]. GEOINFORMATICA, 2016, 20 (01) : 59 - 94
  • [24] Stalker Retrieval on Surveillance Videos using Spatio-Temporal Coappearance
    Liu, Jianquan
    Yung, Duncan
    Nishimura, Shoji
    Araki, Takuya
    [J]. 2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 127 - 134
  • [25] Video classification and retrieval through spatio-temporal Radon features
    Sasithradevi, A.
    Roomi, S. Mohamed Mansoor
    [J]. PATTERN RECOGNITION, 2020, 99
  • [26] Spatio-temporal query contextualization for microtext retrieval in social media
    Park, Jae-Hong
    Lee, O-Joun
    Jung, Jai E.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (15):
  • [27] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan L.
    Hu T.
    Zhu X.
    Ye X.
    Wang S.
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [28] Measuring spatio-temporal couplings using modal spatio-spectral wavefront retrieval
    Weisse, N.
    Esslinger, J.
    Howard, S.
    Foerster, F. M.
    Haberstroh, F.
    Doyle, L.
    Norreys, P.
    Schreiber, J.
    Karsch, S.
    Dopp, A.
    [J]. OPTICS EXPRESS, 2023, 31 (12) : 19733 - 19745
  • [29] Spatio-temporal wind speed forecasting with approximate Bayesian uncertainty quantification
    Neto, Airton F. Souza
    Mattos, César L. C.
    Gomes, João P. P.
    [J]. Neural Computing and Applications, 2024, 36 (28) : 17645 - 17667
  • [30] An additive approximate Gaussian process model for large spatio-temporal data
    Ma, Pulong
    Konomi, Bledar A.
    Kang, Emily L.
    [J]. ENVIRONMETRICS, 2019, 30 (08)