Δ-Sobolev orthogonal polynomials of Meixner type:: asymptotics and limit relation

被引:4
|
作者
Area, I
Godoy, E
Marcellán, F
Moreno-Balcázar, JJ
机构
[1] Univ Almeria, Edificio Cientif Tecn 3, Dept Estadist & Matemat Aplicads, Almeria 04120, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
[3] Univ Vigo, Dept Matemat Aplicada 2, ETSE Telecomunicac, Vigo 36200, Spain
[4] Univ Vigo, Dept Matemat Aplicada 2, ETSI Ind, Vigo 36200, Spain
[5] Univ Carlos III Madrid, Escuela Politecn Super, Dept Matemat, Madrid 28911, Spain
关键词
orthogonal polynomials; Sobolev orthogonal polynomials; Meixner polynomials; Delta-coherent pairs; asymptotics; linear functionals;
D O I
10.1016/j.cam.2004.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {Q(n) (x)}(n) be the sequence of monic polynomials orthogonal with respect to the Sobolev-type inner product < p(x), r(x)>(S) = < u(0), p(x)r(x)> + lambda < u(1), (Delta p)(x)(Delta r)(x)>, where, lambda >= 0, (Delta f)(x) = f (x + 1) - f (x) denotes the forward difference operator and (u(0), u(1)) is a Delta-coherent pair of positive-definite linear functionals being u(1) the Meixner linear functional. In this paper, relative asymptotics for the {Q(n)(x)}(n) sequence with respect to Meixner polynomials on compact subsets of C\(0, +infinity) is obtained. This relative asymptotics is also given for the scaled polynomials. In both cases, we deduce the same asymptotics as we have for the self-A-coherent pair, that is, when u(0) = u(1) is the Meixner linear functional. Furthermore, we establish a limit relation between these orthogonal polynomials and the Laguerre-Sobolev orthogonal polynomials which is analogous to the one existing between Meixner and Laguerre polynomials in the Askey scheme. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 50 条
  • [1] Sobolev Orthogonal Polynomials Generated by Meixner Polynomials
    Sharapudinov, I. I.
    Gadzhieva, Z. D.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (03): : 310 - 321
  • [2] Ratio and Plancherel-Rotach asymptotics for Meixner-Sobolev orthogonal polynomials
    Area, I
    Godoy, E
    Marcellán, F
    Moreno-Balcázar, JJ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 116 (01) : 63 - 75
  • [3] A new approach to the asymptotics of Sobolev type orthogonal polynomials
    Alfaro, M.
    Moreno-Balcazar, J. J.
    Pena, A.
    Rezola, M. L.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 460 - 480
  • [4] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    [J]. Journal d’Analyse Mathématique, 1999, 78 : 143 - 156
  • [5] Sobolev orthogonal polynomials:: Balance and asymptotics
    Alfaro, Manuel
    Jose Moreno-Balcazar, Juan
    Pena, Ana
    Luisa Rezola, M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 547 - 560
  • [6] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type
    Delft Univ of Technology, Delft, Netherlands
    [J]. J Comput Appl Math, 1 (87-97):
  • [7] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [8] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type
    Meijer, HG
    Pérez, TE
    Piñar, MA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) : 528 - 546
  • [9] Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type
    Meijer, HG
    Piñar, MA
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 108 (1-2) : 87 - 97
  • [10] On asymptotics of the Meixner polynomials
    M. Sh. Dzhamalov
    [J]. Mathematical Notes, 1997, 62 (4) : 519 - 520