Performance optimization of adaptive resonance neural networks using genetic algorithms

被引:1
|
作者
Al-Natsheh, Hussein T. [1 ]
Eldos, Taisir M. [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Comp Engn, Irbid 22110, Jordan
关键词
D O I
10.1109/FOCI.2007.372160
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a hybrid clustering system that is based on the Adaptive Resonance Theory 1 (ART1) Artificial Neural Network (ANN) with a Genetic Algorithm (GA) optimizer, to improve the ART1 ANN settings. As a case study, we will consider text clustering. The core of our experiments will be the quality of clustering, Multi-dimensional domain space of ART1. design parameters has many possible combinations of values that yield high clustering quality. These design parameters are hard to estimate manually. We proposed GA to find some of these sets. Results show better clustering and simpler quality estimator when compared with the existing techniques. We call this algorithm Genetically Engineered Parameters ART1 or ARTgep.
引用
收藏
页码:143 / +
页数:2
相关论文
共 50 条
  • [41] Adaptive reconfiguration of data networks using genetic algorithms
    Montana, D
    Hussain, T
    [J]. APPLIED SOFT COMPUTING, 2004, 4 (04) : 433 - 444
  • [42] Adaptive evolutional learning method of neural networks using genetic algorithms under dynamic environments
    Oeda, Shinichi
    Ichimura, Takumi
    Terauchi, Mutsuhiro
    Takahama, Tetsuyuki
    Isomichi, Yoshinori
    [J]. International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 2000, 2 : 742 - 745
  • [43] Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance
    Dieterle, F
    Kieser, B
    Gauglitz, G
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 65 (01) : 67 - 81
  • [44] Adaptive evolutional learning method of neural networks using genetic algorithms under dynamic environments
    Oeda, S
    Ichimura, T
    Terauchi, M
    Takahama, T
    Isomichi, Y
    [J]. KES'2000: FOURTH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, VOLS 1 AND 2, PROCEEDINGS, 2000, : 742 - 745
  • [45] Cooperative adaptive behavior acquisition in mobile robot swarms using neural networks and genetic algorithms
    Munoz, Cesar
    Navarro, Nicolas
    Arredondo, Tomas
    Freund, Wolfgang
    [J]. CERMA 2008: ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE, PROCEEDINGS, 2008, : 417 - +
  • [46] Coevolution in recurrent neural networks using genetic algorithms
    Sato, Y
    Furuya, T
    [J]. SYSTEMS AND COMPUTERS IN JAPAN, 1996, 27 (05) : 64 - 73
  • [47] Classification neural networks improvement using genetic algorithms
    Woinaroschy, A.
    Plesu, V.
    Woinaroschy, K.
    [J]. Hungarian Journal of Industrial Chemistry, 2002, 30 (04): : 241 - 245
  • [48] Configuring silicon neural networks using Genetic Algorithms
    Orchard, Garrick
    Russell, Alexander
    Mazurek, Kevin
    Tenore, Francesco
    Etienne-Cummings, Ralph
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 1048 - +
  • [49] Modeling and analysis of genetic algorithms using neural networks
    Imai, J
    Yoshikawa, T
    Shioya, H
    Da-te, T
    [J]. COMPUTING ANTICIPATORY SYSTEMS, 2002, 627 : 365 - 372
  • [50] Using genetic algorithms to optimize artificial neural networks
    Ding S.
    Xu L.
    Su C.
    Zhu H.
    [J]. Journal of Convergence Information Technology, 2010, 5 (08) : 6