DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors

被引:11
|
作者
Barissi, Sandro [1 ]
Sala, Alba [1 ]
Wieczor, Milosz [1 ,2 ]
Battistini, Federica [1 ,3 ]
Orozco, Modesto [1 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, Inst Res Biomed IRB Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
[2] Gdansk Univ Technol, Dept Phys Chem, PL-80233 Gdansk, Poland
[3] Univ Barcelona, Dept Biochem & Mol Biol, Barcelona 08028, Spain
基金
欧盟地平线“2020”;
关键词
SPECIFICITIES; CHROMATIN; PROTEINS; PATTERNS; ABSENCE; SELEX; SHAPE;
D O I
10.1093/nar/gkac708
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can be extended to epigenetic variants, mismatches, mutations, or any non-coding nucleobases. When complemented with chromatin structure information, our in vitro trained method provides also good estimates of in vivo binding sites in yeast.
引用
收藏
页码:9105 / 9114
页数:10
相关论文
共 50 条
  • [1] A machine-learning approach to predict postprandial hypoglycemia
    Seo, Wonju
    Lee, You-Bin
    Lee, Seunghyun
    Jin, Sang-Man
    Park, Sung-Min
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [2] A machine-learning approach to predict postprandial hypoglycemia
    Wonju Seo
    You-Bin Lee
    Seunghyun Lee
    Sang-Man Jin
    Sung-Min Park
    [J]. BMC Medical Informatics and Decision Making, 19
  • [3] Machine learning study of DNA binding by transcription factors from the LacI family
    G. G. Fedonin
    A. B. Rakhmaninova
    Yu. D. Korostelev
    O. N. Laikova
    M. S. Gelfand
    [J]. Molecular Biology, 2011, 45 : 667 - 679
  • [4] Machine learning study of DNA binding by transcription factors from the LacI family
    Fedonin, G. G.
    Rakhmaninova, A. B.
    Korostelev, Yu D.
    Laikova, O. N.
    Gelfand, M. S.
    [J]. MOLECULAR BIOLOGY, 2011, 45 (04) : 667 - 679
  • [5] Machine Learning Study of DNA Binding by Transcription Factors from the LacI Family
    Fedonin, Gennady G.
    Gelfand, Mikhail S.
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, 2010, 6282 : 15 - 26
  • [6] A novel machine-learning based approach to predict flares of psoriasis
    Ramelyte, E.
    Djamei, V.
    Maul, T. J.
    Anzengruber, F.
    Navarini, A.
    [J]. EXPERIMENTAL DERMATOLOGY, 2018, 27 (03) : E44 - E45
  • [7] Machine-learning approach to predict work hardening behavior of pearlitic steel
    Qiao, Ling
    Liu, Yong
    Zhu, Jingchuan
    Wang, Zibo
    [J]. MATERIALS LETTERS, 2021, 289
  • [8] Comparative analysis of prokaryotic and eukaryotic transcription factors using machine-learning techniques
    Chowdhury, Nilkanta
    Bagchi, Angshuman
    [J]. BIOINFORMATION, 2018, 14 (06) : 315 - 326
  • [9] A machine-learning approach to predict Upper Gastrointestinal multidisciplinary team treatment decisions
    Thavanesan, Navamayooran
    Vigneswaran, Ganesh
    Rahman, Saqib
    Underwood, Timothy
    [J]. BRITISH JOURNAL OF SURGERY, 2022, 109
  • [10] A Machine-learning Approach to Predict Missing Flux Densities in Multiband Galaxy Surveys
    Chartab, Nima
    Mobasher, Bahram
    Cooray, Asantha R.
    Hemmati, Shoubaneh
    Sattari, Zahra
    Ferguson, Henry C.
    Sanders, David B.
    Weaver, John R.
    Stern, Daniel K.
    McCracken, Henry J.
    Masters, Daniel C.
    Toft, Sune
    Capak, Peter L.
    Davidzon, Iary
    Dickinson, Mark E.
    Rhodes, Jason
    Moneti, Andrea
    Ilbert, Olivier
    Zalesky, Lukas
    McPartland, Conor J. R.
    Szapudi, Istvan
    Koekemoer, Anton M.
    Teplitz, Harry I.
    Giavalisco, Mauro
    [J]. ASTROPHYSICAL JOURNAL, 2023, 942 (02):