Variable Length Unordered Codes

被引:10
|
作者
Pezza, Laura [1 ]
Tallini, Luca G. [2 ]
Bose, Bella [3 ,4 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
[2] Univ Teramo, Dipartimento Sci Comunicaz, I-64100 Teramo, Italy
[3] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA
[4] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11451, Saudi Arabia
基金
美国国家科学基金会;
关键词
Asymmetric errors; all unidirectional error detecting (AUED) codes; Berger codes; unidirectional errors; unordered codes; ERROR-DETECTING CODES; REDUNDANCY; CHANNELS; CAPACITY; BOUNDS;
D O I
10.1109/TIT.2011.2173633
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an unordered code, no code word is contained in any other code word. Unordered codes are all unidirectional error detecting (AUED) codes. In the binary case, it is well known that among all systematic codes with information bits, Berger codes are optimal unordered codes with r = inverted right perpendicularlog(2) (k + 1)inverted left perpendicular similar or equal to log(2) k check bits. This paper gives some new theory on variable length unordered codes and introduces a new class of systematic ( instantaneous) unordered codes with variable length check symbols. The average redundancy of the new codes presented here is r similar or equal to (1/2) log(2) k + c, where c is an element of(1.0470, 1.1332) subset of IR and k is an element of IN is the number of information bits. When is large, it is shown that such redundancy is at most 0.6069 bits off the redundancy of an optimal systematic unordered code design with fixed length information symbols and variable length check symbols; and, at most 2.8075 bits off the redundancy of an optimal variable length unordered code design. The generalization is also given for the nonbinary case and it is shown that similar results hold true.
引用
收藏
页码:548 / 569
页数:22
相关论文
共 50 条
  • [31] Soft decoding of variable-length codes
    Kaiser, S
    Bystrom, M
    ICC 2000: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONFERENCE RECORD, VOLS 1-3: GLOBAL CONVERGENCE THROUGH COMMUNICATIONS, 2000, : 1203 - 1207
  • [32] DEGREE AND DECOMPOSABILITY OF VARIABLE-LENGTH CODES
    BRUYERE, V
    DEFELICE, C
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 575 - 587
  • [33] Analysis of the error resiliency of variable length codes
    Department of Electronics Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
    不详
    Huazhong Ligong Daxue Xuebao, 2007, 2 (71-73): : 71 - 73
  • [34] Improved Variable-to-Fixed Length Codes
    Klein, Shmuel T.
    Shapira, Dana
    STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2008, 5280 : 39 - +
  • [35] Error detection capability for variable length codes
    Chujoh, T
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2003, 86 (01): : 70 - 79
  • [36] VARIABLE-TO-FIXED LENGTH CODES PROVIDE BETTER LARGE DEVIATIONS PERFORMANCE THAN FIXED-TO-VARIABLE LENGTH CODES
    MERHAV, N
    NEUHOFF, DL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (01) : 135 - 140
  • [37] New iterative decoding of variable length codes with turbo-codes
    Jaspar, X
    Vandendorpe, L
    2004 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-7, 2004, : 2606 - 2610
  • [38] Iterative Symbol Decoding of Variable-Length Codes with Convolutional Codes
    Wu, Hung-Tsai
    Wu, Chun-Feng
    Chang, Wen-Whei
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2016, 18 (01) : 40 - 49
  • [39] Fast MAP decoding algorithm for variable length codes
    Fan, C
    Cui, HJ
    Tang, K
    2003 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOL 1 AND 2, PROCEEDINGS, 2003, : 1503 - 1506
  • [40] Variable-Length Non-Overlapping Codes
    Bilotta, Stefano
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6530 - 6537