Variable Length Unordered Codes

被引:10
|
作者
Pezza, Laura [1 ]
Tallini, Luca G. [2 ]
Bose, Bella [3 ,4 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
[2] Univ Teramo, Dipartimento Sci Comunicaz, I-64100 Teramo, Italy
[3] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA
[4] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11451, Saudi Arabia
基金
美国国家科学基金会;
关键词
Asymmetric errors; all unidirectional error detecting (AUED) codes; Berger codes; unidirectional errors; unordered codes; ERROR-DETECTING CODES; REDUNDANCY; CHANNELS; CAPACITY; BOUNDS;
D O I
10.1109/TIT.2011.2173633
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an unordered code, no code word is contained in any other code word. Unordered codes are all unidirectional error detecting (AUED) codes. In the binary case, it is well known that among all systematic codes with information bits, Berger codes are optimal unordered codes with r = inverted right perpendicularlog(2) (k + 1)inverted left perpendicular similar or equal to log(2) k check bits. This paper gives some new theory on variable length unordered codes and introduces a new class of systematic ( instantaneous) unordered codes with variable length check symbols. The average redundancy of the new codes presented here is r similar or equal to (1/2) log(2) k + c, where c is an element of(1.0470, 1.1332) subset of IR and k is an element of IN is the number of information bits. When is large, it is shown that such redundancy is at most 0.6069 bits off the redundancy of an optimal systematic unordered code design with fixed length information symbols and variable length check symbols; and, at most 2.8075 bits off the redundancy of an optimal variable length unordered code design. The generalization is also given for the nonbinary case and it is shown that similar results hold true.
引用
收藏
页码:548 / 569
页数:22
相关论文
共 50 条
  • [1] On systematic variable length unordered codes
    Pezza, Laura
    Tallini, Luca G.
    Bose, Bella
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2708 - +
  • [2] SYSTEMATIC VARIABLE LENGTH CHECK BINARY UNORDERED/AUED CODES
    Pezza, Laura
    Tallini, Luca G.
    Bose, Bella
    APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY III, 2009, 82 : 461 - 472
  • [3] ON UNORDERED CODES
    BOSE, B
    IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (02) : 125 - 131
  • [4] Combining variable length codes and turbo codes
    Lakovic, K
    Villasenor, J
    IEEE 55TH VEHICULAR TECHNOLOGY CONFERENCE, VTC SPRING 2002, VOLS 1-4, PROCEEDINGS, 2002, : 1719 - 1723
  • [5] NOTE ON VARIABLE LENGTH CODES
    DELUCA, A
    INFORMATION AND CONTROL, 1976, 32 (03): : 263 - 271
  • [6] ON SEPARABLE UNORDERED CODES
    SMITH, JE
    IEEE TRANSACTIONS ON COMPUTERS, 1984, 33 (08) : 741 - 743
  • [7] On the analysis of variable-to-variable length codes
    Savari, SA
    Szpankowski, W
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 176 - 176
  • [8] Variable length prefix (Δ, k)-codes
    Anisimov, Anatoly V.
    Zavadskyi, Igor O.
    2015 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2015, : 43 - 47
  • [9] ERROR RECOVERY FOR VARIABLE LENGTH CODES
    MAXTED, JC
    ROBINSON, JP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) : 794 - 801
  • [10] The synchronization of variable-length codes
    Titchener, MR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 683 - 691