Omitting Types Theorem for Fuzzy Logics

被引:5
|
作者
Cintula, Petr [1 ]
Diaconescu, Denisa [2 ]
机构
[1] Czech Acad Sci, Inst Comp Sci, Prague 18207, Czech Republic
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
First-order fuzzy logics; left-continuous t-norms; logic MTL; logic UL; mathematical fuzzy logic; omitting types theorem; uninorms;
D O I
10.1109/TFUZZ.2018.2856084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we generalize the omitting types theorem, an important result of classical model theory, for a wide class of fuzzy logics, containing the prominent logics of left-continuous t-norms and uninorms.
引用
收藏
页码:273 / 277
页数:5
相关论文
共 50 条
  • [41] JOINING GODEL AND ZADEH FUZZY LOGICS IN FUZZY DESCRIPTION LOGICS
    Bobillo, Fernando
    Delgado, Miguel
    Gomez-Romero, Juan
    Straccia, Umberto
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2012, 20 (04) : 475 - 508
  • [42] OMITTING TYPES - APPLICATION TO RECURSION THEORY
    GRILLIOT, TJ
    JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (01) : 81 - &
  • [43] Fuzzy Description Logics and t-norm based fuzzy logics
    Garcia-Cerdana, Angel
    Armengol, Eva
    Esteva, Francesc
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (06) : 632 - 655
  • [44] OMITTING TYPES, BOUNDED WIDTH AND THE ABILITY TO COUNT
    Larose, Benoit
    Valeriote, Matt
    Zadori, Laszlo
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2009, 19 (05) : 647 - 668
  • [45] OMITTING TYPES IN SELF-EXTENDING MODELS
    SIMPSON, SG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 831 - &
  • [46] On terms describing omitting unary and affine types
    Jovanovic, Jelena
    FILOMAT, 2013, 27 (01) : 183 - 199
  • [47] Validation sets in RΔ-fuzzy logics and RS-fuzzy logics
    Horcík, R
    INTELLIGENT TECHNOLOGIES - THEORY AND APPLICATIONS: NEW TRENDS IN INTELLIGENT TECHNOLOGIES, 2002, 76 : 137 - 138
  • [48] INTERPOLATION THEOREM FOR MODAL LOGICS
    CZERMAK, J
    JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (02) : 416 - 416
  • [49] A representation theorem for preferential logics
    Siegel, P
    Forget, L
    PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE (KR '96), 1996, : 453 - 460
  • [50] An Inclusion Theorem for Defeasible Logics
    Billington, David
    Antoniou, Grigoris
    Governatori, Guido
    Maher, Michael
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2010, 12 (01)