Stabilization of 2 x 2 linear hyperbolic systems with delayed feedback boundary

被引:0
|
作者
Boulouz, Abed [1 ]
机构
[1] Ibn Zohr Univ, Fac Sci, Dept Math, BP8106, Hay Dakhla, Agadir, Morocco
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 12期
关键词
Positive semigroups; Feedback theory; Control and observation operators; Exponential stability; hyperbolic systems; STABILITY;
D O I
10.1016/j.ifacol.2022.07.310
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the stabilization of linear hyperbolic systems with time lags in the boundary feedback. The well-posedness of such system is established. Moreover, we derived necessary and sufficient conditions on stabilization of hyperbolic systems with delayed feedback boundary. Our approach is mainly based on the feedback theory of infinite dimensional linear systems and the theory of positive semigroups. Copyright (C) 2022 The Authors.
引用
收藏
页码:193 / 197
页数:5
相关论文
共 50 条
  • [21] Dynamic Boundary Stabilization of Linear and Quasi-Linear Hyperbolic Systems
    Castillo, Felipe
    Witrant, Emmanuel
    Prieur, Christophe
    Dugard, Luc
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2952 - 2957
  • [22] Optimal Boundary Control of 2 x 2 Linear Hyperbolic PDEs
    Hasan, Agus
    Imsland, Lars
    Ivanov, Ivan
    Kostova, Snezhana
    Bogdanova, Boryana
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 164 - 169
  • [23] Estimation of an Uncertain Bilinear Boundary Condition in Linear 2 x 2 Hyperbolic Systems with Application to Drilling
    Holta, Haavard
    Anfinsen, Henrik
    Aamo, Ole Morten
    2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, : 188 - 193
  • [24] Adaptive control of linear 2 x 2 hyperbolic systems
    Anfinsen, Henrik
    Aamo, Ole Morten
    AUTOMATICA, 2018, 87 : 69 - 82
  • [25] Estimating Both Reflection Coefficients of 2 x 2 Linear Hyperbolic Systems with Single Boundary Measurement
    Wilhelmsen, Nils Christian A.
    Di Meglio, Florent
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 658 - 665
  • [26] Disturbance Rejection in 2 x 2 Linear Hyperbolic Systems
    Aamo, Ole Morten
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (05) : 1095 - 1106
  • [27] Predictive feedback boundary control of semilinear and quasilinear 2 x 2 hyperbolic PDE-ODE systems
    Strecker, Timm
    Aamo, Ole Morten
    Cantoni, Michael
    AUTOMATICA, 2022, 140
  • [28] Boundary Feedback Control of 2x2 Quasilinear Hyperbolic Systems: Predictive Synthesis and Robustness Analysis
    Strecker, Timm
    Aamo, Ole Morten
    Cantoni, Michael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (03) : 1397 - 1413
  • [29] Stabilization of Linear 2 x 2 Hyperbolic Systems with Uncertain Coupling Coefficients - Part II: Swapping Design
    Anfinsen, Henrik
    Aamo, Ole Morten
    2016 AUSTRALIAN CONTROL CONFERENCE (AUCC), 2016, : 99 - 104
  • [30] Boundary feedback stabilization of quasilinear hyperbolic systems with partially dissipative structure
    Wang, Ke
    Wang, Zhiqiang
    Yao, Wancong
    SYSTEMS & CONTROL LETTERS, 2020, 146