On distance matrices and Laplacians

被引:94
|
作者
Bapat, R
Kirkland, SJ
Neumann, M [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Indian Stat Inst, New Delhi 110016, India
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
trees; distance matrices; Laplacians; determinants; nonnegative matrices;
D O I
10.1016/j.laa.2004.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider distance matrices of certain graphs and of points chosen in a rectangular grid. Formulae for the inverse and the determinant of the distance matrix of a weighted tree are obtained. Results concerning the inertia and the determinant of the distance matrix of an unweighted unicyclic graph are proved. If D is the distance matrix of a tree, then we obtain certain results for a perturbation of D-1. As an example, it is shown that if (L) over tilde is the Laplacian matrix of an arbitrary connected graph, then (D-1 - (L) over tilde)(-1) is an entrywise positive matrix. We consider the distance matrix of a subset of a rectangular grid of points in the plane. If we choose m + k - 1 points, not containing a closed path, in an m x k grid, then a formula for the determinant of the distance matrix of such points is obtained. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 209
页数:17
相关论文
共 50 条
  • [31] Group analysis of distance matrices
    Wang, Jinjuan
    Li, Jialu
    Xiong, Wenjun
    Li, Qizhai
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (06) : 620 - 628
  • [32] ON THE MINIMUM RANK OF DISTANCE MATRICES
    Gachkooban, Zahra
    Alizadeh, Rahim
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 185 - 191
  • [33] On the nonnegative rank of distance matrices
    Hrubes, Pavel
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (11) : 457 - 461
  • [34] On the eigenvalues of Euclidean distance matrices
    Alfakih, A. Y.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (03): : 237 - 250
  • [35] Distance and entropy for density matrices
    Harriman, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (20): : 9223 - 9232
  • [36] DISTANCE MATRICES AND REGULAR FIGURES
    HAYDEN, TL
    TARAZAGA, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 195 : 9 - 16
  • [37] Multispherical Euclidean distance matrices
    Kurata, Hiroshi
    Tarazaga, Pablo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (03) : 534 - 546
  • [38] Geometric Algebra and Distance Matrices
    Riter, Vinicius
    Alves, Rafael
    Lavor, Carlile
    [J]. ADVANCED COMPUTATIONAL APPLICATIONS OF GEOMETRIC ALGEBRA, ICACGA 2022, 2024, 13771 : 88 - 98
  • [39] Spectral properties of distance matrices
    Bogomolny, E
    Bohigas, O
    Schmit, C
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3595 - 3616
  • [40] Distance matrices and isometric embeddings
    Bogomolny, E.
    Bohigas, O.
    Schmit, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2008, 4 (01) : 7 - 23