Fatigue crack growth in IN718/316L multi-materials layered structures fabricated by laser powder bed fusion

被引:22
|
作者
Duval-Chaneac, M. S. [1 ,2 ]
Gao, N. [1 ]
Khan, R. H. U. [3 ]
Giles, M. [1 ]
Georgilas, K. [2 ]
Zhao, X. [1 ]
Reed, P. A. S. [1 ]
机构
[1] Univ Southampton, Fac Engn & Phys Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England
[2] TWI Ltd, NSIRC, Granta Pk, Cambridge CB21 6AL, England
[3] TWI Ltd, Granta Pk, Cambridge CB21 6AL, England
基金
英国工程与自然科学研究理事会;
关键词
Multi-materials; Additive manufacturing (AM); Interface; Fatigue analysis; Crack growth rate; STAINLESS-STEEL; INCONEL; 718; MECHANICAL-PROPERTIES; MATERIALS CHALLENGES; ENERGY DENSITY; HEAT-TREATMENT; 316L; BEHAVIOR; MICROSTRUCTURE; PLASTICITY;
D O I
10.1016/j.ijfatigue.2021.106454
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Multi-materials additive manufacturing (MMAM) allows the functional optimisation of components by tailoring the addition of alloys at different design locations in a single operation. In this study Laser Powder Bed Fusion (L-PBF) technique was used to manufacture layered specimens combining IN718 and 316L materials. The micro-structure and mechanical properties were studied by scanning electron microscopy (SEM), tensile, micro and nanohardness testing. The fatigue tests were performed to determine the crack propagation process through multi-layer specimens in the as-built (AB) state.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Explainable machine learning-based fatigue assessment of 316L stainless steel fabricated by laser-powder bed fusion
    Wang, Xiru
    Braun, Moritz
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 190
  • [32] The Effect of Process Conditions on Mechanical Properties of IN718 Material Fabricated by L-PBF (Laser Powder Bed Fusion)
    Ku, JiYeon
    Lee, Juho
    Kim, Eunggyun
    Kim, Yeong Gyeom
    Park, Eun Soo
    Jeon, Changwoo
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2025, 72
  • [33] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [34] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802
  • [35] Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion
    Kim, Sumin
    Choi, Heesoo
    Lee, Jehyun
    Kim, Sangshik
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 140
  • [36] Pore healing effect of laser polishing and its influence on fatigue properties of 316L stainless steel parts fabricated by laser powder bed fusion
    Panov, Daniil
    Oreshkin, Oleg
    Voloskov, Boris
    Petrovskiy, Victor
    Shishkovsky, Igor
    OPTICS AND LASER TECHNOLOGY, 2022, 156
  • [37] Modulated Structure Formation in Dislocation Cells in 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Sun, Fei
    Ogawa, Toshio
    Adachi, Yoshitaka
    Sato, Kazuhisa
    Takagi, Shunya
    Miyamoto, Goro
    Suzuki, Asuka
    Yamanaka, Akinori
    Nakada, Nobuo
    Ishimoto, Takuya
    Nakano, Takayoshi
    Koizumi, Yuichiro
    MATERIALS TRANSACTIONS, 2023, 64 (06) : 1143 - 1149
  • [38] Investigation of Microstructures and Tensile Properties of 316L Stainless Steel Fabricated via Laser Powder Bed Fusion
    Chepkoech, Melody
    Owolabi, Gbadebo
    Warner, Grant
    MATERIALS, 2024, 17 (04)
  • [39] Electrochemical behavior of laser powder bed fusion fabricated 316L stainless steel in a nitric acid solution
    Soleimani, Sahar
    Yeganeh, Mahdi
    Lari Baghal, Seyed Mohammad
    JOURNAL OF LASER APPLICATIONS, 2022, 34 (04)
  • [40] Deformation-induced martensitic transformation in 316L stainless steels fabricated by laser powder bed fusion
    Ni, Xiaoqing
    Kong, Decheng
    Wu, Wenheng
    Zhang, Liang
    Dong, Chaofang
    MATERIALS LETTERS, 2021, 302