The maximum principles for fractional Laplacian equations and their applications

被引:38
|
作者
Cheng, Tingzhi [1 ]
Huang, Genggeng [1 ]
Li, Congming [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Fractional Laplacian; moving plane; maximum principle; NONLINEAR ELLIPTIC-EQUATIONS; SYMMETRY; REGULARITY; MONOTONICITY;
D O I
10.1142/S0219199717500183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to investigate the symmetry and monotonicity properties for positive solutions of fractional Laplacian equations. Especially, we consider the following fractional Laplacian equation with homogeneous Dirichlet condition: { (-Delta)(alpha/2) u = f(x, u,del u) in Omega, for alpha is an element of(0, 2). u > 0, in Omega; u equivalent to 0, in R-n\Omega, Here Omega is a domain (bounded or unbounded) in R-n which is convex in x(1)-direction. (-Delta)(alpha/2) is the nonlocal fractional Laplacian operator which is defined as (-Delta)(alpha/2)u(x) = Cn,alpha P.V. integral(n)(R) u(x) - u(y)/vertical bar x - y vertical bar (n+alpha), 0 < alpha < 2. Under various conditions on f(x, u, p) and on a solution u(x) it is shown that u is strictly increasing in x(1) in the left half of Omega, or in Omega. Symmetry (in x(1)) of some solutions is proved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Maximum principles and nonexistence results for radial solutions to equations involving p-Laplacian
    Adamowicz, Tomasz
    Katamajska, Agnieszka
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (13) : 1618 - 1627
  • [22] Maximum Principles for Fourth Order Nonlinear Elliptic Equations with Applications
    Dhaigude, D. B.
    Dhaigude, R. M.
    Lomte, Gajanan C.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 9 - 15
  • [23] REGULARITY OF NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIAN
    Xia, Aliang
    Yang, Jianfu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) : 2665 - 2672
  • [24] Principles and applications of the laplacian electrocardiogram
    University of Illinois, Chicago, IL, United States
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    IEEE Engineering in Medicine and Biology Magazine, 16 (05): : 133 - 138
  • [25] Nonlinear equations with a generalized fractional Laplacian
    Igor Kossowski
    Bogdan Przeradzki
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [26] Principles and applications of the Laplacian electrocardiogram
    He, B
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1997, 16 (05): : 133 - 138
  • [27] MAXIMUM PRINCIPLES FOR MULTI-TERM SPACE-TIME VARIABLE-ORDER FRACTIONAL DIFFUSION EQUATIONS AND THEIR APPLICATIONS
    Liu, Zhenhai
    Zeng, Shengda
    Bai, Yunru
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) : 188 - 211
  • [28] ON SINGULAR EQUATIONS INVOLVING FRACTIONAL LAPLACIAN
    Ahmed YOUSSFI
    Ghoulam OULD MOHAMED MAHMOUD
    ActaMathematicaScientia, 2020, 40 (05) : 1289 - 1315
  • [29] Nonlinear equations with a generalized fractional Laplacian
    Kossowski, Igor
    Przeradzki, Bogdan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [30] On Singular Equations Involving Fractional Laplacian
    Ahmed Youssfi
    Ghoulam Ould Mohamed Mahmoud
    Acta Mathematica Scientia, 2020, 40 : 1289 - 1315