The crystallographic fast Fourier transform. Recursive symmetry reduction

被引:6
|
作者
Kudlicki, Andrzej [1 ]
Rowicka, Maga [1 ]
Otwinowski, Zbyszek [1 ]
机构
[1] UT Southwestern Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
关键词
Fast Fourier transform; Recursive symmetry reduction;
D O I
10.1107/S0108767307047411
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Algorithms are presented for maximally efficient computation of the crystallographic fast Fourier transform (FFT). The approach is applicable to all 230 space groups and allows reduction of both the computation time and the memory usage by a factor equal to the number of symmetry operators. The central idea is a recursive reduction of the problem to a series of transforms on grids with no special points. The maximally efficient FFT for such grids has been described in previous papers by the same authors. The interaction between the grid size factorization and the symmetry operators and its influence on the algorithm design are discussed.
引用
收藏
页码:465 / 480
页数:16
相关论文
共 50 条
  • [1] The crystallographic fast Fourier transform. II. One-step symmetry reduction
    Rowicka, M
    Kudlicki, A
    Otwinowski, Z
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2003, 59 : 172 - 182
  • [2] The crystallographic fast Fourier transform.: I.: p3 symmetry
    Rowicka, M
    Kudlicki, A
    Otwinowski, Z
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : 574 - 579
  • [3] The crystallographic fast Fourier transform. III. Centred lattices
    Rowicka, M
    Kudlicki, A
    Otwinowski, Z
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2003, 59 : 183 - 192
  • [4] FORTH AND THE FAST FOURIER TRANSFORM.
    Barnhart, Joe
    1600, (09):
  • [5] ANALYSIS OF RUBBER FRICTION BY THE FAST FOURIER TRANSFORM.
    Schapery, R.A.
    1978, 6 (02): : 89 - 113
  • [6] The crystallographic fast Fourier transform. IV. FFT-asymmetric units in the reciprocal space
    Kudlicki, A
    Rowicka, M
    Otwinowski, Z
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : 146 - 152
  • [7] FAST ALGORITHMS FOR THE DISCRETE W TRANSFORM AND FOR THE DISCRETE FOURIER TRANSFORM.
    Wang, Zhongde
    IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, ASSP-32 (04): : 803 - 816
  • [8] FAST FOURIER TRANSFORM ALGORITHM USING FERMAT NUMBER TRANSFORM.
    Morikawa, Yoshitaka
    Hamada, Hiroshi
    Yamane, Nobumoto
    Systems, computers, controls, 1982, 13 (04): : 12 - 21
  • [9] New Aspects of Zoom-Fast Fourier Transform.
    Kolerus, Josef
    Messen+Prufen, 1980, (11): : 811 - 812
  • [10] Signal-Processing Algorithms Realized Via Fast Fourier Transform.
    Kukharev, G.A.
    Tupikov, V.D.
    Izvestia vyssih ucebnyh zavedenij. Priborostroenie, 1980, 23 (06): : 52 - 56