A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks

被引:28
|
作者
Feng, Guohua [1 ]
Gao, Jiti [2 ]
Peng, Bin [3 ]
Zhang, Xiaohui [4 ]
机构
[1] Univ North Texas, Dept Econ, Denton, TX 76201 USA
[2] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic 3145, Australia
[3] Univ Technol Sydney, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia
[4] Univ Exeter, Dept Econ, Exeter EX4 4PU, Devon, England
基金
澳大利亚研究理事会;
关键词
Categorical variable; Estimation theory; Nonlinear panel data model; Returns to scale; SEMIPARAMETRIC ESTIMATION; NONPARAMETRIC-ESTIMATION; REGRESSION; INFERENCE; COST; SELECTION; EQUATIONS; SYSTEM;
D O I
10.1016/j.jeconom.2016.09.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a semiparametric varying-coefficient categorical panel data model in which covariates (variables affecting the coefficients) are purely categorical. This model has two features: first, fixed effects are included to allow for correlation between individual unobserved heterogeneity and the regressors; second, it allows for cross-sectional dependence through a general spatial error dependence structure. We derive a semiparametric estimator for our model by using a modified within transformation, and then show the asymptotic and finite properties for this estimator under large N and T. The Monte Carlo study shows that our methodology works well for both large N and T, and large N and small T cases. Finally, we illustrate our model by analyzing the effects of state-level banking regulations on the returns to scale of commercial banks in the US. Our empirical results suggest that returns to scale is higher in more regulated states than in less regulated states. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 82
页数:15
相关论文
共 50 条
  • [41] Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data
    Wu, CO
    Chiang, CT
    Hoover, DR
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1388 - 1402
  • [42] Estimation of Fixed Effects Partially Linear Varying Coefficient Panel Data Regression Model with Nonseparable Space-Time Filters
    Li, Bogui
    Chen, Jianbao
    Li, Shuangshuang
    [J]. MATHEMATICS, 2023, 11 (06)
  • [43] Efficient Estimation for Varying-Coefficient Mixed Effects Models with Functional Response Data
    Xiong Cai
    Liugen Xue
    Xiaolong Pu
    Xingyu Yan
    [J]. Metrika, 2021, 84 : 467 - 495
  • [44] A varying-coefficient model for the evaluation of time-varying concomitant intervention effects in longitudinal studies
    Wu, Colin O.
    Tian, Xin
    Bang, Heejung
    [J]. STATISTICS IN MEDICINE, 2008, 27 (16) : 3042 - 3056
  • [45] A varying-coefficient partially linear transformation model for length-biased data with an application to HIV vaccine studies
    Wan, Alan T. K.
    Zhao, Wei
    Gilbert, Peter
    Zhou, Yong
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (01): : 131 - 162
  • [46] EFFICIENT NONPARAMETRIC THREE-STAGE ESTIMATION OF FIXED EFFECTS VARYING COEFFICIENT PANEL DATA MODELS
    Rodriguez-Poo, Juan M.
    Soberon, Alexandra
    [J]. STATISTICA SINICA, 2021, 31 (02) : 981 - 1003
  • [47] Testing for sphericity in a fixed effects panel data model with time-varying variances
    Peng, Bin
    Shen, Xinyuan
    Ye, Jinqi
    [J]. ECONOMICS LETTERS, 2019, 181 : 85 - 89
  • [48] Generalized semiparametric varying-coefficient model for longitudinal data with applications to adaptive treatment randomizations
    Qi, Li
    Sun, Yanqing
    Gilbert, Peter B.
    [J]. BIOMETRICS, 2017, 73 (02) : 441 - 451
  • [49] Semiparametric varying-coefficient model with right-censored and length-biased data
    Lin, Cunjie
    Zhou, Yong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 152 : 119 - 144
  • [50] The semiparametric varying-coefficient composite expectile regression model in risk measurement and its application
    Liu X.
    Zhou Y.
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2020, 40 (08): : 2176 - 2192