Sampling theorem and discrete Fourier transform on the Riemann sphere

被引:9
|
作者
Calixto, M. [1 ]
Guerrero, J. [2 ]
Sanchez-Monreal, J. C. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[2] Univ Murcia, Dept Matemat Aplicada, E-30100 Murcia, Spain
关键词
holomorphic functions; coherent states; discrete Fourier transform; sampling; frames;
D O I
10.1007/s00041-008-9027-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of N samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to J, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.
引用
收藏
页码:538 / 567
页数:30
相关论文
共 50 条
  • [41] Relation between discrete cosine transform and discrete fourier transform
    Liu, Saili
    Xi'an Shiyou Xueyuan Xuebao/Journal of Xi'an Petroleum Institute, 10 (01):
  • [42] FRESNEL TRANSFORM AND SAMPLING THEOREM
    GORI, F
    OPTICS COMMUNICATIONS, 1981, 39 (05) : 293 - 297
  • [43] Fourier Transform Associated with Riemann Zeta Function
    Mikaelyan, G., V
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (01): : 30 - 36
  • [44] Fourier Transform Associated with Riemann Zeta Function
    G. V. Mikaelyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2021, 56 : 30 - 36
  • [45] Steerable Discrete Fourier Transform
    Fracastoro, Giulia
    Magli, Enrico
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (03) : 319 - 323
  • [46] Fractionalization of the discrete Fourier transform
    Rueda-Paz, J.
    Munoz, C. A.
    REVISTA MEXICANA DE FISICA E, 2010, 56 (01): : 98 - 106
  • [47] Discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 536 - 539
  • [48] Alternatives to the discrete Fourier transform
    Balcan, Doru
    Sandryhaila, Aliaksei
    Gross, Jonathan
    Pueschel, Markus
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3537 - 3540
  • [49] Uniqueness of the discrete Fourier transform
    Baraquin, Isabelle
    Ratier, Nicolas
    SIGNAL PROCESSING, 2023, 209
  • [50] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716